Classification of finite spectral triples

被引:96
作者
Krajewski, T
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Univ Aix Marseille 1, F-13331 Marseille 3, France
[3] Ecole Normale Super Lyon, F-69364 Lyon, France
关键词
noncommutative geometry; Yang-Mills theory; spontaneous symmetry breaking; chiral fermions; spectral triples;
D O I
10.1016/S0393-0440(97)00068-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the spin structure on Riemannian manifold can be extended to noncommutative geometry using the notion of spectral triple. For finite geometries, the corresponding finite spectral triples are completely described in terms of matrices and classified using diagrams. When tensorized with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories with spontaneous symmetry breaking, whose characteristic features are given within the diagrammatic approach: vertices of the diagram correspond to gauge multiplets of chiral fermions and links to Yukawa couplings. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
[21]   Spectral triples and the geometry of fractals [J].
Christensen, Erik ;
Ivan, Cristina ;
Schrohe, Elmar .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (02) :249-274
[22]   ON INDUCTIVE LIMIT SPECTRAL TRIPLES [J].
Floricel, Remus ;
Ghorbanpour, Asghar .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) :3611-3619
[23]   PRODUCT OF REAL SPECTRAL TRIPLES [J].
Dabrowski, Ludwik ;
Dossena, Giacomo .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (08) :1833-1848
[24]   Summability for nonunital spectral triples [J].
Rennie, A .
K-THEORY, 2004, 31 (01) :71-100
[25]   Spectral triples for the Sierpinski gasket [J].
Cipriani, Fabio ;
Guido, Daniele ;
Isola, Tommaso ;
Sauvageot, Jean-Luc .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :4809-4869
[26]   On the Product of Real Spectral Triples [J].
F. J. Vanhecke .
Letters in Mathematical Physics, 1999, 50 :157-162
[27]   Tadpoles and commutative spectral triples [J].
Iochum, Bruno ;
Levy, Cyril .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (03) :299-329
[28]   Untwisting twisted spectral triples [J].
Goffeng, Magnus ;
Mesland, Bram ;
Rennie, Adam .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (14)
[29]   Convergence of inductive sequences of spectral triples for the spectral propinquity [J].
Farsi, Carla ;
Latremoliere, Frederic ;
Packer, Judith .
ADVANCES IN MATHEMATICS, 2024, 437
[30]   Twists and Spectral Triples for Isospectral Deformations [J].
Andrzej Sitarz .
Letters in Mathematical Physics, 2001, 58 :69-79