Classification of finite spectral triples

被引:93
作者
Krajewski, T
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Univ Aix Marseille 1, F-13331 Marseille 3, France
[3] Ecole Normale Super Lyon, F-69364 Lyon, France
关键词
noncommutative geometry; Yang-Mills theory; spontaneous symmetry breaking; chiral fermions; spectral triples;
D O I
10.1016/S0393-0440(97)00068-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the spin structure on Riemannian manifold can be extended to noncommutative geometry using the notion of spectral triple. For finite geometries, the corresponding finite spectral triples are completely described in terms of matrices and classified using diagrams. When tensorized with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories with spontaneous symmetry breaking, whose characteristic features are given within the diagrammatic approach: vertices of the diagram correspond to gauge multiplets of chiral fermions and links to Yukawa couplings. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [21] Spectral triples and the geometry of fractals
    Christensen, Erik
    Ivan, Cristina
    Schrohe, Elmar
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (02) : 249 - 274
  • [22] ON INDUCTIVE LIMIT SPECTRAL TRIPLES
    Floricel, Remus
    Ghorbanpour, Asghar
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3611 - 3619
  • [23] PRODUCT OF REAL SPECTRAL TRIPLES
    Dabrowski, Ludwik
    Dossena, Giacomo
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (08) : 1833 - 1848
  • [24] Summability for nonunital spectral triples
    Rennie, A
    K-THEORY, 2004, 31 (01): : 71 - 100
  • [25] Untwisting twisted spectral triples
    Goffeng, Magnus
    Mesland, Bram
    Rennie, Adam
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (14)
  • [26] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [27] Tadpoles and commutative spectral triples
    Iochum, Bruno
    Levy, Cyril
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (03) : 299 - 329
  • [28] On the Product of Real Spectral Triples
    F. J. Vanhecke
    Letters in Mathematical Physics, 1999, 50 : 157 - 162
  • [29] Convergence of inductive sequences of spectral triples for the spectral propinquity
    Farsi, Carla
    Latremoliere, Frederic
    Packer, Judith
    ADVANCES IN MATHEMATICS, 2024, 437
  • [30] Twists and Spectral Triples for Isospectral Deformations
    Andrzej Sitarz
    Letters in Mathematical Physics, 2001, 58 : 69 - 79