Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy

被引:70
作者
Xue, Peng [1 ,2 ]
Hou, Mengmeng [1 ,2 ]
Sun, Lihong [1 ,2 ]
Li, Qian [1 ,2 ]
Zhang, Lei [3 ]
Xu, Zhigang [1 ,2 ]
Kang, Yuejun [1 ,2 ]
机构
[1] Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[2] Chongqing Engn Res Ctr Micronano Biomed Mat & Dev, Chongqing 400715, Peoples R China
[3] Southwest Univ, State Key Lab Silkworm Genome Biol, Chongqing 400716, Peoples R China
基金
中国国家自然科学基金;
关键词
Synergistic therapeutics; pH-triggered drug release; Photothermal therapy; Photodynamic therapy; MESOPOROUS SILICA NANOPARTICLES; CONTROLLED DRUG-RELEASE; PHOTODYNAMIC THERAPY; PHOTOTHERMAL THERAPY; THERMAL THERAPY; PROTON SPONGE; CANCER; TUMOR; DELIVERY; NANOCOMPOSITES;
D O I
10.1016/j.actbio.2018.09.045
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Indocyanine green (ICG) is an efficient photosensitizer that can facilitate producing cytotoxic reactive oxygen species (ROS). At the same time, ICG also has characteristic absorption of near-infrared light and thus can induce a strong photothermal effect. Both of these important features of ICG may be applied for noninvasive light-induced tumor ablation. On the other hand, ICG is lack of stability in blood circulation and susceptible to aggregation or premature clearance from the body. These issues need to be effectively addressed before antitumor application of ICG becomes possible. Herein, a nanocomposite consisting of calcium carbonate modified magnetic polydopamine (PDA) nanoparticles and loaded with ICG, namely Fe3O4@PDA@CaCO3/ICG (FPCI) NPs, was developed to integrate the photothermal capability of PDA with the photodynamic capability of ICG. Particularly, calcium carbonate not only entrapped ICG in the form of stable aggregate to evade blood clearance, but also facilitated controlled release of ICG in response to acidic tumor microenvironment via self-decomposition. With the aid of magnetic guidance, this multifunctional therapeutic agent makes it possible to achieve the combination of photothermal (PTT) and photodynamic therapies (PDT) against tumors, which was demonstrated by this proof-of-concept study based on in vitro and in vivo tumor models. Statement of Significance Currently, there is an ongoing trend of realizing precise and targeted tumor therapy using functional nanocomplexes. Magnetic particles, which can be manipulated by a magnetic field, have attracted increasing attention for tumor therapy. This submitted work demonstrated that calcium carbonate nano shell was precipitated onto magnetic nanocores mediated by polydopamine. Moreover, indocyanine green (ICG), as a potent photosensitizer, was embedded in this nanocomplex and protected by the calcium carbonate nanoshell, resulting in high drug loading efficiency and enhanced drug stability on the carrier. This new nanocomposite was demonstrated to achieve controlled and pH-responsive release of ICG in tumor environment. This work explored the relationship between the physiochemical properties of the nanocomplex and their potential biomedical applications, aiming to inspire the development of analogous nanoplatforms featured with calcium carbonate blocks. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:242 / 255
页数:14
相关论文
共 63 条
[1]   Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles [J].
Abadeer, Nardine S. ;
Murphy, Catherine J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (09) :4691-4716
[2]   New photosensitizers for photodynamic therapy [J].
Abrahamse, Heidi ;
Hamblin, Michael R. .
BIOCHEMICAL JOURNAL, 2016, 473 :347-364
[3]   Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer [J].
Altinoglu, Erhan i. ;
Russin, Timothy J. ;
Kaiser, James M. ;
Barth, Brian M. ;
Eklund, Peter C. ;
Kester, Mark ;
Adair, James H. .
ACS NANO, 2008, 2 (10) :2075-2084
[4]   Magnetic nanoparticles for drug delivery [J].
Arruebo, Manuel ;
Fernandez-Pacheco, Rodrigo ;
Ibarra, M. Ricardo ;
Santamaria, Jesus .
NANO TODAY, 2007, 2 (03) :22-32
[5]  
Behr JP, 1997, CHIMIA, V51, P34
[6]   The Possible "Proton Sponge" Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH [J].
Benjaminsen, Rikke V. ;
Mattebjerg, Maria A. ;
Henriksen, Jonas R. ;
Moghimi, S. Moein ;
Andresen, Thomas L. .
MOLECULAR THERAPY, 2013, 21 (01) :149-157
[7]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[8]   Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy [J].
Chen, Mei ;
Fang, Xiaoliang ;
Tang, Shaoheng ;
Zheng, Nanfeng .
CHEMICAL COMMUNICATIONS, 2012, 48 (71) :8934-8936
[9]   Cell Membrane Camouflaged Hollow Prussian Blue Nanoparticles for Synergistic Photothermal-/Chemotherapy of Cancer [J].
Chen, Wansong ;
Zeng, Ke ;
Liu, Hong ;
Ouyang, Jiang ;
Wang, Liqiang ;
Liu, Ying ;
Wang, Hao ;
Deng, Liu ;
Liu, You-Nian .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (11)
[10]   Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment [J].
Chen, Yu-Wei ;
Su, Yu-Lin ;
Hu, Shang-Hsiu ;
Chen, San-Yuan .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 105 :190-204