Quasilocality and Efficient Simulation of Markovian Quantum Dynamics

被引:52
作者
Barthel, Thomas [1 ]
Kliesch, Martin
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
LIEB-ROBINSON BOUNDS; SYSTEMS; DRIVEN; STATES;
D O I
10.1103/PhysRevLett.108.230504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider open many-body systems governed by a time-dependent quantum master equation with short-range interactions. With a generalized Lieb-Robinson bound, we show that the evolution in this very generic framework is quasilocal; i.e., the evolution of observables can be approximated by implementing the dynamics only in a vicinity of the observables' support. The precision increases exponentially with the diameter of the considered subsystem. Hence, time evolution can be simulated on classical computers with a cost that is independent of the system size. Providing error bounds for Trotter decompositions, we conclude that the simulation on a quantum computer is additionally efficient in time. For experiments and simulations in the Schrodinger picture, our result can be used to rigorously bound finite-size effects.
引用
收藏
页数:5
相关论文
共 42 条
[11]  
Davis E., 1976, QUANTUM THEORY OPEN
[12]   Reconstruction of non-classical cavity field states with snapshots of their decoherence [J].
Deleglise, Samuel ;
Dotsenko, Igor ;
Sayrin, Clement ;
Bernu, Julien ;
Brune, Michel ;
Raimond, Jean-Michel ;
Haroche, Serge .
NATURE, 2008, 455 (7212) :510-514
[13]   Quantum states and phases in driven open quantum systems with cold atoms [J].
Diehl, S. ;
Micheli, A. ;
Kantian, A. ;
Kraus, B. ;
Buechler, H. P. ;
Zoller, P. .
NATURE PHYSICS, 2008, 4 (11) :878-883
[14]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[15]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[16]   Density Matrix Renormalization Group in the Heisenberg Picture [J].
Hartmann, Michael J. ;
Prior, Javier ;
Clark, Stephen R. ;
Plenio, Martin B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[17]   Spectral gap and exponential decay of correlations [J].
Hastings, MB ;
Koma, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) :781-804
[18]   Lieb-Schultz-Mattis in higher dimensions [J].
Hastings, MB .
PHYSICAL REVIEW B, 2004, 69 (10)
[19]   Dissipative Quantum Church-Turing Theorem [J].
Kliesch, M. ;
Barthel, T. ;
Gogolin, C. ;
Kastoryano, M. ;
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[20]   FINITE-GROUP VELOCITY OF QUANTUM SPIN SYSTEMS [J].
LIEB, EH ;
ROBINSON, DW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (03) :251-&