Self-Critical Attention Learning for Person Re-Identification

被引:137
作者
Chen, Guangyi [1 ,2 ,3 ]
Lin, Chunze [1 ,2 ,3 ]
Ren, Liangliang [1 ,2 ,3 ]
Lu, Jiwen [1 ,2 ,3 ]
Zhou, Jie [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China
[3] Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV.2019.00973
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a self-critical attention learning method for person re-identification. Unlike most existing methods which train the attention mechanism in a weakly-supervised manner and ignore the attention confidence level, we learn the attention with a critic which measures the attention quality and provides a powerful supervisory signal to guide the learning process. Moreover, the critic model facilitates the interpretation of the effectiveness of the attention mechanism during the learning process, by estimating the quality of the attention maps. Specifically, we jointly train our attention agent and critic in a reinforcement learning manner, where the agent produces the visual attention while the critic analyzes the gain from the attention and guides the agent to maximize this gain. We design spatial- and channel-wise attention models with our critic module and evaluate them on three popular benchmarks including Market-1501, DukeMTMC-ReID, and CUHK03. The experimental results demonstrate the superiority of our method, which outperforms the state-of-the-art methods by a large margin of 5.9%/2.1%, 6.3%/3.0%, and 10.5%/9.5% on mAP/Rank-1, respectively.
引用
收藏
页码:9636 / 9645
页数:10
相关论文
共 56 条
[1]  
[Anonymous], 2017, P BRIT MACH VIS C
[2]  
[Anonymous], 2015, PROC CVPR IEEE, DOI 10.1109/CVPR.2015.7299016
[3]  
[Anonymous], 2016, CoRR abs/1512.00567, DOI DOI 10.1109/CVPR.2016.308
[4]   Multi-Level Factorisation Net for Person Re-Identification [J].
Chang, Xiaobin ;
Hospedales, Timothy M. ;
Xiang, Tao .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2109-2118
[5]   Stereoscopic Neural Style Transfer [J].
Chen, Dongdong ;
Yuan, Lu ;
Liao, Jing ;
Yu, Nenghai ;
Hua, Gang .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6654-6663
[6]   Spatial-Temporal Attention-Aware Learning for Video-Based Person Re-Identification [J].
Chen, Guangyi ;
Lu, Jiwen ;
Yang, Ming ;
Zhou, Jie .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) :4192-4205
[7]   Beyond triplet loss: a deep quadruplet network for person re-identification [J].
Chen, Weihua ;
Chen, Xiaotang ;
Zhang, Jianguo ;
Huang, Kaiqi .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1320-1329
[8]   Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function [J].
Cheng, De ;
Gong, Yihong ;
Zhou, Sanping ;
Wang, Jinjun ;
Zheng, Nanning .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1335-1344
[9]   A Two Stream Siamese Convolutional Neural Network For Person Re-Identification [J].
Chung, Dahjung ;
Tahboub, Khalid ;
Delp, Edward J. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1992-2000
[10]   Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [J].
Deng, Weijian ;
Zheng, Liang ;
Ye, Qixiang ;
Kang, Guoliang ;
Yang, Yi ;
Jiao, Jianbin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :994-1003