Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach

被引:37
|
作者
Zeng, Nianyin [1 ,2 ]
Wang, Zidong [3 ]
Li, Yurong [2 ]
Du, Min [2 ]
Liu, Xiaohui [3 ]
机构
[1] Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou 350002, Peoples R China
[2] Fujian Key Lab Med Instrumentat & Pharmaceut Tech, Fuzhou 350002, Peoples R China
[3] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
关键词
Extended Kalman filter (EKF); lateral flow immunoassay (LFIA); parameter estimation; particle filter; state estimation; PARAMETER-ESTIMATION; ASSAY; ENHANCEMENT;
D O I
10.1109/TNANO.2011.2171193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [1] Inference of Nonlinear State-Space Models for Sandwich-Type Lateral Flow Immunoassay Using Extended Kalman Filtering
    Zeng, Nianyin
    Wang, Zidong
    Li, Yurong
    Du, Min
    Liu, Xiaohui
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (07) : 1959 - 1966
  • [2] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [3] Learning Nonlinear State-Space Models Using Smooth Particle-Filter-Based Likelihood Approximations
    Svensson, Andreas
    Lindsten, Fredrik
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2018, 51 (15): : 652 - 657
  • [4] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [5] Marginalized particle filters for mixed linear/nonlinear state-space models
    Schön, T
    Gustafsson, F
    Nordlund, PJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2279 - 2289
  • [6] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [7] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [8] Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities
    Salhi H.
    Kamoun S.
    International Journal of Engineering Systems Modelling and Simulation, 2017, 9 (03) : 127 - 135
  • [9] Inferring Gene Regulatory Networks via Nonlinear State-Space Models and Exploiting Sparsity
    Noor, Amina
    Serpedin, Erchin
    Nounou, Mohamed
    Nounou, Hazem N.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 1203 - 1211
  • [10] Identification of nonlinear state-space time-delay system
    Liu, Xin
    Zhang, Hang
    Zhu, Pengbo
    Yang, Xianqiang
    Du, Zhiwei
    ASSEMBLY AUTOMATION, 2020, 40 (01) : 22 - 30