Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach

被引:37
|
作者
Zeng, Nianyin [1 ,2 ]
Wang, Zidong [3 ]
Li, Yurong [2 ]
Du, Min [2 ]
Liu, Xiaohui [3 ]
机构
[1] Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou 350002, Peoples R China
[2] Fujian Key Lab Med Instrumentat & Pharmaceut Tech, Fuzhou 350002, Peoples R China
[3] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
关键词
Extended Kalman filter (EKF); lateral flow immunoassay (LFIA); parameter estimation; particle filter; state estimation; PARAMETER-ESTIMATION; ASSAY; ENHANCEMENT;
D O I
10.1109/TNANO.2011.2171193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [1] Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
    Nianyin ZENG
    Zidong WANG
    Hong ZHANG
    Science China(Information Sciences), 2016, 59 (11) : 73 - 82
  • [2] Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
    Zeng, Nianyin
    Wang, Zidong
    Zhang, Hong
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (11)
  • [3] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [4] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [5] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170
  • [6] Inference of Nonlinear State-Space Models for Sandwich-Type Lateral Flow Immunoassay Using Extended Kalman Filtering
    Zeng, Nianyin
    Wang, Zidong
    Li, Yurong
    Du, Min
    Liu, Xiaohui
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (07) : 1959 - 1966
  • [7] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [8] Gaussian Flow Sigma Point Filter for Nonlinear Gaussian State-Space Models
    Nurminen, Henri
    Piche, Robert
    Godsill, Simon
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 445 - 452
  • [9] Initialization Approach for Nonlinear State-Space Identification via the Subspace Encoder Approach
    Ramkannan, Rishi
    Beintema, Gerben I.
    Toth, Roland
    Schoukens, Maarten
    IFAC PAPERSONLINE, 2023, 56 (02): : 5146 - 5151
  • [10] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184