Affine isometric embeddings and rigidity

被引:1
作者
Ivey, T [1 ]
机构
[1] CASE WESTERN RESERVE UNIV,DEPT MATH,CLEVELAND,OH 44106
关键词
affine differential geometry; isometric embedding;
D O I
10.1023/A:1004949130760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Pick cubic form is a fundamental invariant in the (equi)affine differential geometry of hypersurfaces. We study its role in the affine isometric embedding problem, using exterior differential systems (EDS). We give pointwise conditions on the Pick form under which an isometric embedding of a Riemannian manifold M(3) into R(4) is rigid. The role of the Pick form in the characteristic variety of the EDS leads us to write down examples of nonrigid isometric embeddings for a class of warped product M(3)'s.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 5 条
[1]  
Bryant R., 1991, Exterior differential systems
[2]  
BRYANT RL, 1973, DUKE MATH J, V50, P893
[3]   HYPERSURFACES WITH MAXIMAL AFFINELY INVARIANT AREA [J].
CALABI, E .
AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (01) :91-126
[4]  
NOMIZU K, 1991, GEOMETRY TOPOLOGY SU, V3, P227
[5]  
SIMON U, 1988, GEOMETRIAE DEDICATA, V26, P125