Torsion of Elliptic Curves Over Real Quadratic Fields of Smallest Discriminant

被引:0
作者
Sarma, Naba Kanta [1 ]
机构
[1] Assam Univ, Dept Math, Cachar 788011, Assam, India
关键词
Elliptic curve; Torsion subgroup; cusp; discriminant; POINTS;
D O I
10.1007/s13226-019-0314-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [9] and [10], Filip Najman examined the torsion of elliptic curves over the number fields (-1) and (-3). In this paper, we study the torsion structures of elliptic curves over the real quadratic number fields (2) and (5), which have the smallest discriminants among all real quadratic fields (d) with d ? 1 mod 4 and d 1 mod 4 respectively.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1977, IHES Publ. Math.
[2]  
[Anonymous], E COMMUNICATION
[3]   EQUATIONS FOR THE MODULAR CURVE X1(N) AND MODELS OF ELLIPTIC CURVES WITH TORSION POINTS [J].
Baaziz, Houria .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :2371-2386
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Bosma W., HDB MAGMA FUNCTIONS
[6]   Torsion of rational elliptic curves over quartic Galois number fields [J].
Chou, Michael .
JOURNAL OF NUMBER THEORY, 2016, 160 :603-628
[7]  
Diamond F., 2005, GTM
[8]   TORSION POINTS ON ELLIPTIC-CURVES AND Q-COEFFICIENTS OF MODULAR-FORMS [J].
KAMIENNY, S .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :221-229
[9]   Torsion groups of elliptic curves over quadratic fields [J].
Kamienny, Sheldon ;
Najman, Filip .
ACTA ARITHMETICA, 2012, 152 (03) :291-305
[10]   TORSION POINTS ON ELLIPTIC-CURVES DEFINED OVER QUADRATIC FIELDS [J].
KENKU, MA ;
MOMOSE, F .
NAGOYA MATHEMATICAL JOURNAL, 1988, 109 :125-149