The Cauchy operator for basic hypergeometric series

被引:25
作者
Chen, Vincent Y. B. [1 ]
Gu, Nancy S. S. [1 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
q-difference operator; the Cauchy operator; the Askey-Wilson integral; the Askey-Roy integral; basic hypergeometric series; parameter augmentation;
D O I
10.1016/j.aam.2007.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine's (2)phi(1) transformation formula and Sears' (3)phi(2) transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T(bD(q)). Using this operator, we obtain extensions of the Askey-Wilson integral, the Askey-Roy integral, Sears' two-term summation formula, as well as the q-analogs of Barnes' lemmas. Finally, we find that the Cauchy operator is also suitable for the study of the bivariate Rogers-Szego polynomials, or the continuous big q-Hermite polynomials. (C) 2007 Published by Elsevier Inc.
引用
收藏
页码:177 / 196
页数:20
相关论文
共 28 条
  • [1] ANDREWS GE, 1971, STUD APPL MATH, V50, P345
  • [2] ANDREWS GE, 1982, MATH CHRON, V11, P1
  • [3] [Anonymous], 1985, MEM AM MATH SOC AMS, DOI DOI 10.1090/MEMO/0319
  • [4] ARFKEN G, 1985, MATH METHODS PHYS, P301
  • [5] ASKEY R, 1983, INDIAN J PURE AP MAT, V14, P892
  • [6] MORE Q-BETA INTEGRALS
    ASKEY, R
    ROY, R
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1986, 16 (02) : 365 - 372
  • [7] On a general q-Fourier transformation with nonsymmetric kernels
    Askey, RA
    Rahman, M
    Suslov, SK
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 68 (1-2) : 25 - 55
  • [8] Barnes E.W., 1910, Quart. J. Math., V141, P136
  • [9] Barnes EW, 1908, P LOND MATH SOC, V6, P141
  • [10] Chen W Y C., 1998, Parameter augmenting for basic hypergeometric series I//Sagan B E, P111