A Multi-Axis FBG-Based Tactile Sensor for Gripping in Space

被引:5
作者
Frishman, Samuel [1 ]
Di, Julia [1 ]
Karachiwalla, Zulekha [2 ]
Black, Richard J. [3 ]
Moslehi, Kian [3 ]
Smith, Trey [4 ]
Coltin, Brian [4 ]
Moslehi, Bijan [3 ]
Cutkosky, Mark R. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Univ Maryland, Dept Comp Engn, Baltimore, MD 21250 USA
[3] Intelligent Fiber Opt Syst Corp, San Jose, CA 95134 USA
[4] NASA Ames, Mountain View, CA 94035 USA
来源
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2021年
基金
美国国家航空航天局;
关键词
BRAGG; TEMPERATURE;
D O I
10.1109/IROS51168.2021.9635998
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tactile sensing can improve end-effector control and grasp quality, especially for free-flying robots where target approach and alignment present particular challenges. However, many current tactile sensing technologies are not suitable for the harsh environment of space. We present a tactile sensor that measures normal and biaxial shear strains in the pads of a gripper using a single optical fiber with Bragg grating (FBG) sensors. Compared to conventional wired solutions, the encapsulated optical fibers are immune to electromagnetic interference-critical in the harsh environment of space. Sampling is possible at over 1 kHz to detect dynamic events. We mount sensor pads on a custom two-fingered gripper with independent control of the distal and proximal phalanges, allowing for grip readjustment based on sensing data. Calibrated sensor data for forces match those from a commercial multiaxial load cell with an average 96.2% RMS for all taxels. We demonstrate the gripper on tasks motivated by the Astrobee free-flying robots in the International Space Station (ISS): gripping corners, detecting misaligned grasps, and improving load sharing over the contact areas in pinch grasps.
引用
收藏
页码:1794 / 1799
页数:6
相关论文
共 30 条
[1]  
Allen Demers L.A., 2015, U.S. Patent, Patent No. [US8973958 B2, 8973958]
[2]   Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors [J].
Berruti, G. ;
Consales, M. ;
Giordano, M. ;
Sansone, L. ;
Petagna, P. ;
Buontempo, S. ;
Breglio, G. ;
Cusano, A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 177 :94-102
[3]   Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications [J].
Campanella, Carlo Edoardo ;
Cuccovillo, Antonello ;
Campanella, Clarissa ;
Yurt, Abdulkadir ;
Passaro, Vittorio M. N. .
SENSORS, 2018, 18 (09)
[4]   The Velo gripper: A versatile single-actuator design for enveloping, parallel and fingertip grasps [J].
Ciocarlie, Matei ;
Hicks, Fernando Mier ;
Holmberg, Robert ;
Hawke, Jeffrey ;
Schlicht, Michael ;
Gee, Jeff ;
Stanford, Scott ;
Bahadur, Ryan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (05) :753-767
[5]  
Cutkosky MR, 2016, SPRINGER HANDBOOK OF ROBOTICS, P717
[6]  
Heo JS, 2008, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY, P486, DOI 10.1109/ICSENST.2008.4757153
[7]   Tactile sensor arrays using fiber Bragg grating sensors [J].
Heo, JS ;
Chung, JH ;
Lee, JJ .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 126 (02) :312-327
[8]   Design of a Novel Six-Axis Wrist Force Sensor [J].
Hu, Shanshan ;
Wang, Huaiyang ;
Wang, Yong ;
Liu, Zhengshi .
SENSORS, 2018, 18 (09)
[9]   Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing [J].
Huang, Fengqin ;
Chen, Tao ;
Si, Jinhai ;
Xuantung Pham ;
Hou, Xun .
OPTICS COMMUNICATIONS, 2019, 452 :233-237
[10]  
Jiang L, 2015, IEEE INT C INT ROBOT, P1763, DOI 10.1109/IROS.2015.7353606