Learning in a Fuzzy Random Forest Ensemble from Imperfect Data

被引:0
|
作者
Cadenas, Jose M. [1 ]
Carmen Garrido, M. [1 ]
Martinez, Raquel [1 ]
机构
[1] Univ Murcia, Fac Informat, Dpt Engn Informat & Commun, Murcia, Spain
关键词
Fuzzy Sets; Imperfect data; Classification Technique;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Instrument errors or noise interference during experiments may lead to incomplete data when measuring a specific attribute. Obtaining models from imperfect data is a topic currently being treated with more interest. In this paper, we present the learning phase of a Fuzzy Random Forest ensemble for classification from imperfect data. We perform experiments with imperfect datasets created for this purpose and datasets used in other papers to show the express the true nature of imperfect information.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [11] An Ensemble Random Forest Algorithm for Insurance Big Data Analysis
    Wu, Ziming
    Lin, Weiwei
    Zhang, Zilong
    Wen, Angzhan
    Lin, Longxin
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 531 - 536
  • [12] An empirical study of learning from imbalanced data using random forest
    Khoshgoftaar, Taghi M.
    Golawala, Moiz
    Van Hulse, Jason
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 310 - 317
  • [13] Road Network State Estimation using Random Forest Ensemble Learning
    Hou, Yi
    Edara, Praveen
    Chang, Yohan
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [14] A fuzzy random forest
    Bonissone, Piero
    Cadenas, Jose M.
    Carmen Garrido, M.
    Andres Diaz-Valladares, R.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (07) : 729 - 747
  • [15] Ensemble of optimal trees, random forest and random projection ensemble classification
    Khan, Zardad
    Gul, Asma
    Perperoglou, Aris
    Miftahuddin, Miftahuddin
    Mahmoud, Osama
    Adler, Werner
    Lausen, Berthold
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (01) : 97 - 116
  • [16] Ensemble of optimal trees, random forest and random projection ensemble classification
    Zardad Khan
    Asma Gul
    Aris Perperoglou
    Miftahuddin Miftahuddin
    Osama Mahmoud
    Werner Adler
    Berthold Lausen
    Advances in Data Analysis and Classification, 2020, 14 : 97 - 116
  • [17] ENSEMBLE CLASSIFIER WITH RANDOM FOREST ALGORITHM TO DEAL WITH IMBALANCED HEALTHCARE DATA
    Anbarasi, M. S.
    Janani, V.
    2017 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2017,
  • [18] Extracting Interpretable Decision Tree Ensemble from Random Forest
    Gulowaty, Bogdan
    Wozniak, Michal
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [19] A Review on Random Forest: An Ensemble Classifier
    Parmar, Aakash
    Katariya, Rakesh
    Patel, Vatsal
    INTERNATIONAL CONFERENCE ON INTELLIGENT DATA COMMUNICATION TECHNOLOGIES AND INTERNET OF THINGS, ICICI 2018, 2019, 26 : 758 - 763
  • [20] Ensemble Deep Learning Model using Random Forest for Patient Shock Detection
    Jeong, Minsu
    Lee, Namhwa
    Ko, Byuk Sung
    Joe, Inwhee
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2023, 17 (04): : 1080 - 1099