Quantum phase transitions of periodic anisotropic XY chain in a transverse field

被引:24
|
作者
Tong, PQ [1 ]
Zhong, M
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] CCAST, World Lab, Beijing 100080, Peoples R China
基金
美国国家科学基金会;
关键词
quantum phase transitions; anisotropic XY chains; transverse field; transfer matrix method;
D O I
10.1016/S0921-4526(01)00546-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The transfer matrix method is used to study the quantum phase transitions of the uniform and periodic anisotropic, XY quantum spin in a transverse field, which is defined by H = -1/2 Sigma (n) [J(n)(sigma (x)(n)sigma (x)(n+1) + alpha sigma (y)(n)sigma (y)(n-1)) + h sigma (z)(n)]. In zero temperature. it is found that the quantum phase transition point corresponds to h/J I for uniform chain (J(n) = J). For periodic chain, there is more than one phase transition point at some parameter region. In case the couplings take two alternating values, with ratio the number of phase transition points are dependent on the parameters (alpha and gamma) and the structure of the systems. These are different from that of quantum Ising chain in a transverse field. The critical points and the conditions of their existence are obtained analytically for period-two and three chains. The results are in good agreement with numerical results. The reasons of quantum phase transitions are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [31] Quantum phase transitions of a two-leg bosonic ladder in an artificial gauge field
    Citro, R.
    De Palo, S.
    Di Dio, M.
    Orignac, E.
    PHYSICAL REVIEW B, 2018, 97 (17)
  • [32] Generalized entanglement and quantum phase transitions
    Somma, Rolando
    Barnum, Howard
    Knill, Emanuel
    Ortiz, Gerardo
    Viola, Lorenzo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (19): : 2760 - 2769
  • [33] Scaling, entanglement, and quantum phase transitions
    Osterloh, A
    Amico, L
    Falci, G
    Fazio, R
    FIRST INTERNATIONAL SYMPOSIUM ON QUANTUM INFORMATICS, 2002, 5128 : 22 - 28
  • [34] Quantum phase transitions in mesoscopic systems
    Iachello, F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (19): : 2687 - 2694
  • [35] Quantum phase transitions in random magnets
    Young, AP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART I) : 556 - 559
  • [36] Geometric phases and quantum phase transitions
    Zhu, Shi-Liang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (06): : 561 - 581
  • [37] Quantum phase transitions on the hexagonal lattice
    Smith, Dominik
    Buividovich, Pavel
    Koerner, Michael
    Ulybyshev, Maksim
    von Smekal, Lorenz
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (25):
  • [38] Search for Electronic Phase Separation at Quantum Phase Transitions
    Pfleiderer, C.
    Boeni, P.
    Franz, C.
    Keller, T.
    Neubauer, A.
    Niklowitz, P. G.
    Schmakat, P.
    Schulz, M.
    Huang, Y. -K.
    Mydosh, J. A.
    Vojta, M.
    Duncan, W.
    Grosche, F. M.
    Brando, M.
    Deppe, M.
    Geibel, C.
    Steglich, F.
    Krimmel, A.
    Loidl, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 161 (1-2) : 167 - 181
  • [39] Order-disorder layering transitions in a variable transverse field
    Bahmad, L
    Benyoussef, A
    Ez-Zahraouy, H
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 238 (01) : 115 - 122
  • [40] Search for Electronic Phase Separation at Quantum Phase Transitions
    C. Pfleiderer
    P. Böni
    C. Franz
    T. Keller
    A. Neubauer
    P. G. Niklowitz
    P. Schmakat
    M. Schulz
    Y.-K. Huang
    J. A. Mydosh
    M. Vojta
    W. Duncan
    F. M. Grosche
    M. Brando
    M. Deppe
    C. Geibel
    F. Steglich
    A. Krimmel
    A. Loidl
    Journal of Low Temperature Physics, 2010, 161 : 167 - 181