Regression Analysis of Rectal Cancer and Possible Application of Artificial Intelligence (AI) Utilization in Radiotherapy

被引:2
作者
Alnowami, Majdi [1 ]
Abolaban, Fouad [1 ,2 ]
Hijazi, Hussam [3 ]
Nisbet, Andrew [4 ]
机构
[1] King Abdulaziz Univ, Fac Engn, Dept Nucl Engn, POB 80204, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, KA CARE Energy Res & Innovat Ctr, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Med, Radiol Dept, Radiat Oncol Unit, POB 80204, Jeddah 21589, Saudi Arabia
[4] UCL, Dept Med Phys & Biomed Engn, Malet Pl Engn Bldg, London WC1E 6BT, England
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 02期
关键词
radiotherapy; treatment planning; Artificial Intelligence; and tumor regression; THERAPY; HEAD;
D O I
10.3390/app12020725
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Artificial Intelligence (AI) has been widely employed in the medical field in recent years in such areas as image segmentation, medical image registration, and computer-aided detection. This study explores one application of using AI in adaptive radiation therapy treatment planning by predicting the tumor volume reduction rate (TVRR). Cone beam computed tomography (CBCT) scans of twenty rectal cancer patients were collected to observe the change in tumor volume over the course of a standard five-week radiotherapy treatment. In addition to treatment volume, patient data including patient age, gender, weight, number of treatment fractions, and dose per fraction were also collected. Application of a stepwise regression model showed that age, dose per fraction and weight were the best predictors for tumor volume reduction rate.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Cancer and Radiation Therapy: Current Advances and Future Directions [J].
Baskar, Rajamanickam ;
Lee, Kuo Ann ;
Yeo, Richard ;
Yeoh, Kheng-Wei .
INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2012, 9 (03) :193-199
[2]   Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? [J].
Brouwer, Charlotte L. ;
Steenbakkers, Roe J. H. M. ;
Langendijk, Johannes A. ;
Sijtsema, Nanna M. .
RADIOTHERAPY AND ONCOLOGY, 2015, 115 (03) :285-294
[3]   Artificial Intelligence in Medical Applications [J].
Chan, Yung-Kuan ;
Chen, Yung-Fu ;
Pham, Tuan ;
Chang, Weide ;
Hsieh, Ming-Yuan .
JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
[4]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[5]   Machine learning and modeling: Data, validation, communication challenges [J].
El Naqa, Issam ;
Ruan, Dan ;
Valdes, Gilmer ;
Dekker, Andre ;
McNutt, Todd ;
Ge, Yaorong ;
Wu, Q. Jackie ;
Oh, Jung Hun ;
Thor, Maria ;
Smith, Wade ;
Rao, Arvind ;
Fuller, Clifton ;
Xiao, Ying ;
Manion, Frank ;
Schipper, Matthew ;
Mayo, Charles ;
Moran, Jean M. ;
Ten Haken, Randall .
MEDICAL PHYSICS, 2018, 45 (10) :E834-E840
[6]   Machine Learning in radiation Oncology: Opportunities, requirements, and Needs [J].
Feng, Mary ;
Valdes, Gilmer ;
Dixit, Nayha ;
Solberg, Timothy D. .
FRONTIERS IN ONCOLOGY, 2018, 8
[7]   Comparison of machine learning methods for prediction of osteoradionecrosis incidence in patients with head and neck cancer [J].
Humbert-Vidan, Laia ;
Patel, Vinod ;
Oksuz, Ilkay ;
King, Andrew Peter ;
Urbano, Teresa Guerrero .
BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1120)
[8]   Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations [J].
Hussein, Mohammad ;
Heijmen, Ben J. M. ;
Verellen, Dirk ;
Nisbet, Andrew .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1092)
[9]   Artificial intelligence in radiation oncology [J].
Huynh, Elizabeth ;
Hosny, Ahmed ;
Guthier, Christian ;
Bitterman, Danielle S. ;
Petit, Steven E. ;
Haas-Kogan, Daphne A. ;
Kann, Benjamin ;
Aert, Hugo J. W. L. ;
Mak, Raymond H. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (12) :771-781
[10]   Applications and limitations of machine learning in radiation oncology [J].
Jarrett, Daniel ;
Stride, Eleanor ;
Vallis, Katherine ;
Gooding, Mark J. .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1100)