Representation Theory of a Semisimple Extension of the Takiff Superalgebra

被引:2
作者
Cheng, Shun-Jen
Coulembier, Kevin [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
基金
澳大利亚研究理事会;
关键词
LIE-SUPERALGEBRAS; KOSZUL DUALITY; FUNCTORS; ALGEBRA;
D O I
10.1093/imrn/rnab149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a semisimple extension of a Takiff superalgebra, which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.
引用
收藏
页码:14454 / 14495
页数:42
相关论文
共 35 条
[1]  
[Anonymous], 1986, Contemporary Soviet Mathematics
[2]  
Balagovic M, 2019, MATH RES LETT, V26, P643, DOI 10.4310/MRL.2019.v26.n3.a2
[3]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[4]   ON THE THEORY OF FROBENIUS EXTENSIONS AND ITS APPLICATION TO LIE-SUPERALGEBRAS [J].
BELL, AD ;
FARNSTEINER, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (01) :407-424
[5]   HOOK YOUNG-DIAGRAMS WITH APPLICATIONS TO COMBINATORICS AND TO REPRESENTATIONS OF LIE-SUPERALGEBRAS [J].
BERELE, A ;
REGEV, A .
ADVANCES IN MATHEMATICS, 1987, 64 (02) :118-175
[6]  
Bourbaki N., 1968, GROUPES ALGEBRES L 4
[7]  
Brundan J.C., ARXIV180808022
[8]   Tensor Product Categorifications and the Super Kazhdan-Lusztig Conjecture [J].
Brundan, Jonathan ;
Losev, Ivan ;
Webster, Ben .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) :6329-6410
[9]   Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup [J].
Brundan, Jonathan ;
Stroppel, Catharina .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (02) :373-419
[10]   Ad-nilpotent ideals of a Borel subalgebra II [J].
Cellini, P ;
Papi, P .
JOURNAL OF ALGEBRA, 2002, 258 (01) :112-121