Energy method for Boltzmann equation

被引:205
作者
Liu, TP [1 ]
Yang, T
Yu, SH
机构
[1] Acad Sinica, Math Inst, Taipei, Taiwan
[2] Stanford Univ, Dept Math, Stanford, CA USA
[3] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Boltzmann equation; H-theorem; Maxwellian states; macro-micro decomposition;
D O I
10.1016/j.physd.2003.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A basic, simple energy method for the Boltzmann equation is presented here. It is based on a new macro-micro decomposition of the Boltzmann equation as well as the H-theorem. This allows us to make use of the ideas from hyperbolic conservation laws and viscous conservation laws to yield the direct energy method. As an illustration, we apply the method for the study of the time-asymptotic, nonlinear stability of the global Maxwellian states. Previous energy method, starting with Grad and finishing with Ukai, involves the spectral analysis and regularity of collision operator through sophisticated weighted norms. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 192
页数:15
相关论文
共 12 条
[1]  
Boltzmann L., 1896, Vorlesungen uber Gastheorie
[2]   On the theory of Botzmann's integrodifferential equation [J].
Carleman, T .
ACTA MATHEMATICA, 1933, 60 (01) :91-146
[3]  
Chapman S., 1990, MATH THEORY NONUNIFO
[4]   ON A BOUNDARY-LAYER PROBLEM FOR THE NONLINEAR BOLTZMANN-EQUATION [J].
GOLSE, F ;
PERTHAME, B ;
SULEM, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 103 (01) :81-96
[5]  
GRAD H, 1963, 3RD RARIFIED GAS DYN, V1, P26
[6]  
HILBERT D, 1953, GRUNDZUGE ALLGEMEINE, pCH22
[7]   FLUID-DYNAMICAL APPROXIMATION TO THE BOLTZMANN-EQUATION AT THE LEVEL OF THE NAVIER-STOKES EQUATION [J].
KAWASHIMA, S ;
MATSUMURA, A ;
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) :97-124
[8]  
LIU TP, IN PRESS COMMUN MATH
[9]  
MAXWELL JC, 1980, DYNAMICAL THEORY GAS, V2, P26
[10]  
MAXWELL JC, STRESSES RAREFIED GA, P681