Impact of Back-Gate Biasing on the Transport Properties of 22 nm FD-SOI MOSFETs at Cryogenic Temperatures

被引:15
作者
Al Mamun, Fahad [1 ]
Vasileska, Dragica [1 ]
Esqueda, Ivan Sanchez [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
Scattering; Temperature; Logic gates; Cryogenics; Threshold voltage; Resistance; Phonons; Cryogenic CMOS; fully depleted silicon-on-insulator (FD-SOI); mobility; MOSFET; quasi-ballistic transport; Schrodinger-Poisson; FDSOI; VOLTAGE; MODELS;
D O I
10.1109/TED.2022.3199328
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article reports on the impact of back gate bias on the transport properties and performance of 22 nm fully depleted silicon-on-insulator (FD-SOI) MOSFETs. FD-SOI MOSFETs were analyzed as a function of back-gate bias from 300 down to 8 K in the context of quasi-ballistic transport. Our analysis revealed a significantly larger effect of back-gate bias on effective channel mobility at cryogenic temperatures compared to 300 K. This is attributed to the more significant contribution from surface roughness and Coulomb scattering at low temperatures. In this context, the application of a back-gate bias shifts the position of the charge carriers away from the top gate oxide/semiconductor interface thereby reducing the impact of scattering. These findings are verified with self-consistent calculations of the charge distribution in the FD-SOI structure using a 1-D Schrodinger-Poisson solver. This work provides new insight on the impact of back-gate biasing on apparent mobility, mean free path, and ballistic ratio in FD-SOI MOSFETs at cryogenic temperatures.
引用
收藏
页码:5417 / 5423
页数:7
相关论文
共 47 条
[1]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[2]  
Angot D, 2013, IEEE INT REL PHYS S, DOI [10.1109/IRPS.2013.6532037, DOI 10.1109/IRPS.2013.6532037]
[3]  
Auth C., 2012, 2012 IEEE Symposium on VLSI Technology, P131, DOI 10.1109/VLSIT.2012.6242496
[4]   Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Grill, Alexander ;
Narasimhamoorthy, Subramanian ;
Parvais, Bertrand ;
Enz, Christian .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2020, 8 :780-788
[5]   3D quantum modeling and simulation of multiple-gate nanowire MOSFETs [J].
Bescond, M ;
Nehari, K ;
Autran, JL ;
Cavassilas, N ;
Munteanu, D ;
Lannoo, M .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :617-620
[6]   CMOS Scaling Trends and Beyond [J].
Bohr, Mark T. ;
Young, Ian A. .
IEEE MICRO, 2017, 37 (06) :20-29
[7]  
Carter R, 2016, INT EL DEVICES MEET
[8]   Carrier transport in HfO2/metal gate MOSFETs:: Physical insight into critical parameters [J].
Cassé, M ;
Thevenod, L ;
Guillaumot, B ;
Tosti, L ;
Martin, F ;
Mitard, J ;
Weber, O ;
Andrieu, F ;
Ernst, T ;
Reimbold, G ;
Billon, T ;
Mouis, M ;
Boulanger, F .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (04) :759-768
[9]   Characterization and Modeling of 22 nm FDSOI Cryogenic RF CMOS [J].
Chakraborty, Wriddhi ;
Aabrar, Khandker Akif ;
Gomez, Jorge ;
Saligram, Rakshith ;
Raychowdhury, Arijit ;
Fay, Patrick ;
Datta, Suman .
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2021, 7 (02) :184-192
[10]   Experiment Characterization of Front and Back Interfaces Impact on Back Gate Modulation in UTBB-FDSOI MOSFETs [J].
Chen, Wangyong ;
Cai, Linlin ;
Cao, Yongfeng ;
Liao, Duanquan ;
Tian, Ming ;
Xing, Zhang ;
Liu, Xiaoyan ;
Du, Gang .
2019 IEEE 26TH INTERNATIONAL SYMPOSIUM ON PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA), 2019,