ZnO decorated luminescent graphene as a potential gas sensor at room temperature

被引:331
作者
Singh, Gaurav [1 ,2 ]
Choudhary, Anshul [1 ,2 ]
Haranath, D. [1 ]
Joshi, Amish G. [1 ]
Singh, Nahar [1 ]
Singh, Sukhvir [1 ]
Pasricha, Renu [1 ]
机构
[1] CSIR, Natl Phys Lab, New Delhi 110012, India
[2] Univ Delhi, Netaji Subhas Inst Technol, Fac Technol, New Delhi 110078, India
关键词
CARBON NANOTUBES; OXIDE; ROUTE; METAL; NANOPARTICLES; TRANSPARENT; CLUSTERS; SHEETS;
D O I
10.1016/j.carbon.2011.08.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a simplistic single step synthesis and a detailed study of the remarkable room temperature gas sensing and photoluminescence (PL) properties of zinc oxide (ZnO) decorated graphene oxide sheets (GrO). Investigation of opto-electronic properties reveal near UV to blue PL and semiconducting behavior of ZnO-GrO sheets. ZnO nano-crystallites serve the dual purpose of acting as a nano-spacer between dried graphene sheets as well as a primary sensing transducer for the gas sensing applications. PL has been used as a tool to study the defects associated with the surface of the nanocrystallite's trap levels and/or acceptor-donor recombinations. Time-resolved PL was used to determine free carrier or exciton lifetimes, a vital parameter related to quality of composite and device performance. Results are presented for the detection of common industrial toxins like CO, NH3 and NO for concentrations as low as 1 ppm at room temperature. A large sensor response and quick recovery time was observed at room temperature with preferred selectivity towards electron donor gases like CO and NH3. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 43 条
[1]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[2]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[3]   NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method [J].
Cho, Pyeong-Seok ;
Kim, Ki-Won ;
Lee, Jong-Heun .
JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) :975-978
[4]   Metal oxide nano-crystals for gas sensing [J].
Comini, Elisabetta .
ANALYTICA CHIMICA ACTA, 2006, 568 (1-2) :28-40
[5]   Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide [J].
Cuong, Tran Viet ;
Pham, Viet Hung ;
Tran, Quang Trung ;
Hahn, Sung Hong ;
Chung, Jin Suk ;
Shin, Eun Woo ;
Kim, Eui Jung .
MATERIALS LETTERS, 2010, 64 (03) :399-401
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   Blue Photoluminescence from Chemically Derived Graphene Oxide [J].
Eda, Goki ;
Lin, Yun-Yue ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Chen, Hsin-An ;
Chen, I-Sheng ;
Chen, Chun-Wei ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (04) :505-+
[8]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[9]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306
[10]   Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? [J].
Franke, ME ;
Koplin, TJ ;
Simon, U .
SMALL, 2006, 2 (01) :36-50