A flexible self-poled piezoelectric nanogenerator based on a rGO-Ag/PVDF nanocomposite

被引:111
作者
Pusty, Manojit [1 ]
Sinha, Lichchhavi [1 ]
Shirage, Parasharam M. [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Met Engn & Mat Sci, Indore 453552, Madhya Pradesh, India
关键词
POLY(VINYLIDENE FLUORIDE); DIELECTRIC-PROPERTIES; ENERGY HARVESTER; GRAPHENE OXIDE; FILMS; PERFORMANCE; FABRICATION; RAMAN; MELT;
D O I
10.1039/c8nj04751k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we demonstrate the mechanical energy harvesting performance of a poly(vinylidene-fluoride) (PVDF) device which is loaded with reduced graphene oxide-silver nanoparticles (rGO-Ag). The current results show that the addition of rGO-Ag enhances the polar beta and gamma piezoelectric phases in PVDF, which is capable of generating a greater piezoelectric output, thereby eliminating the requirement of any external poling process. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FT-IR) characterizations were employed for the identification and quantification of the piezoelectric polar phases of the nanocomposite films. Raman spectroscopy confirmed the interactions between rGO-Ag and PVDF. Polarization vs. electric field (P-E) loop testing was performed and it was found that on the application of an external electric field of 148 kV cm(-1) the nanocomposite showed an energy density value of approximate to 0.26 J cm(-1), which indicates its potential for energy storage applications. The fabricated energy harvesting device, a piezoelectric nanogenerator (PNG), could charge up capacitors and light up to 20 commercial blue light-emitting diodes. The PNG was tested to harvest biomechanical energy from pulsing mechanical energy by fixing it to fingers on the human palm. The PNG was also fixed to flip-flops in order to demonstrate its footwear connected energy harvesting application. The PNG showed a peak output open circuit voltage of approximate to 18 V and a short circuit current of approximate to 1.05 A, with a peak power density of 28 W m(-3) across a 1 M resistor. The PNG shows a moderate efficiency of 0.65%.
引用
收藏
页码:284 / 294
页数:11
相关论文
共 43 条
[1]   Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility [J].
Alam, Md. Mehebub ;
Mandal, Dipankar .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) :1555-1558
[2]   Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation [J].
Alam, Md Mehebub ;
Ghosh, Sujoy Kumar ;
Sultana, Ayesha ;
Mandal, Dipankar .
NANOTECHNOLOGY, 2015, 26 (16)
[3]   Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide [J].
Bhavanasi, Venkateswarlu ;
Kumar, Vipin ;
Parida, Kaushik ;
Wang, Jiangxin ;
Lee, Pooi See .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (01) :521-529
[4]   Polyvinylidene fluoride/zirconium phosphate sulfophenylphosphonate nanocomposite films: microstructure and mechanical properties [J].
Casciola, Mario ;
Capitani, Donatella ;
Donnadio, Anna ;
Diosono, Valentina ;
Piaggio, Paolo ;
Pica, Monica .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (36) :4291-4296
[5]   Nano-KTN@ Ag/PVDF composite films with high permittivity and low dielectric loss by introduction of designed KTN/Ag core/shell nanoparticles [J].
Chen, Gaoru ;
Wang, Xuan ;
Lin, Jiaqi ;
Yang, Wenlong ;
Li, Haidong ;
Wen, Yinian ;
Li, Landi ;
Jiang, Zhichao ;
Lei, Qingquan .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (34) :8070-8076
[6]   Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy [J].
Constantino, CJL ;
Job, AE ;
Simoes, RD ;
Giacometti, JA ;
Zucolotto, V ;
Oliveira, ON ;
Gozzi, G ;
Chinaglia, DL .
APPLIED SPECTROSCOPY, 2005, 59 (03) :275-279
[7]   High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride) [J].
Ding, Ran ;
Zhang, Xiaoli ;
Chen, Geng ;
Wang, Hongli ;
Kishor, Rahul ;
Xiao, Juanxiu ;
Gao, Fei ;
Zeng, Kaiyang ;
Chen, Xiaodong ;
Sun, Xiao Wei ;
Zheng, Yuanjin .
NANO ENERGY, 2017, 37 :126-135
[8]   Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes [J].
Elashmawi, I. S. ;
Gaabour, L. H. .
RESULTS IN PHYSICS, 2015, 5 :105-110
[9]   Hybrid Energy Harvester Consisting of Piezoelectric Fibers with Largely Enhanced 20 V for Wearable and Muscle-Driven Applications [J].
Fuh, Yiin-Kuen ;
Ye, Jia-Cheng ;
Chen, Po-Chou ;
Ho, Hsi-Chun ;
Huang, Zih-Ming .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) :16923-16931
[10]   Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator [J].
Garain, Samiran ;
Jana, Santanu ;
Sinha, Tridib Kumar ;
Mandal, Dipankar .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (07) :4532-4540