Systematic literature review: Machine learning techniques (machine learning)

被引:0
|
作者
Alfaro, Anderson Damian Jimenez [1 ]
Ospina, Jose Vicente Diaz [2 ]
机构
[1] Univ Catolica Luis Amigo, Ingn Ind, Medellin, Colombia
[2] Univ Catolica Luis Amigo, Ingn Financiero & Negocios, Medellin, Colombia
来源
CUADERNO ACTIVA | 2021年 / 13期
关键词
Machine learning; forecasting; business intelligence; marketing; business management;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Currently, there are a great diversity of models that allow making predictions, and for this there are machine learning techniques that can help organizations to boost their sales through these predictive models. In this article a specialized search of scientific literature is carried out that provides clarity on which are the most used techniques and under what criteria are they effective. According to the research needs, the most relevant articles have been filtered and selected to elucidate how to execute a machine learning project for sales forecasting. From the review carried out, it can be affirmed that the different machine learning techniques found in the literature are evolutions of different known techniques, which is an important component to maintain business competitiveness, and if they are well used could become sales-enhancing tools in companies organizations.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [31] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [32] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1155 - 1173
  • [33] Machine learning techniques for arrhythmic risk stratification: a review of the literature
    Cheuk To Chung
    George Bazoukis
    Sharen Lee
    Ying Liu
    Tong Liu
    Konstantinos P. Letsas
    Antonis A. Armoundas
    Gary Tse
    International Journal of Arrhythmia, 23 (1)
  • [34] Prototype Learning in Machine Learning: A Literature Review
    Zhang X.-X.
    Zhu Z.-F.
    Zhao Y.-W.
    Zhao Y.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (10): : 3732 - 3753
  • [35] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A. A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE ACCESS, 2022, 10 : 134557 - 134570
  • [36] A Systematic Review of Machine Learning Techniques for GNSS Use Cases
    Siemuri, Akpojoto
    Selvan, Kannan
    Kuusniemi, Heidi
    Valisuo, Petri
    Elmusrati, Mohammed S.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (06) : 5043 - 5077
  • [37] Applications and Techniques of Machine Learning in Cancer Classification: A Systematic Review
    Abrar Yaqoob
    Rabia Musheer Aziz
    Navneet Kumar verma
    Human-Centric Intelligent Systems, 2023, 3 (4): : 588 - 615
  • [38] A systematic review of Machine learning techniques for Heart disease prediction
    Udhan, Shivganga
    Patil, Bankat
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (02): : 229 - 239
  • [39] A systematic review of machine learning techniques for software fault prediction
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2015, 27 : 504 - 518
  • [40] Use of machine learning in osteoarthritis research: a systematic literature review
    Binvignat, Marie
    Pedoia, Valentina
    Butte, Atul J.
    Louati, Karine
    Klatzmann, David
    Berenbaum, Francis
    Mariotti-Ferrandiz, Encarnita
    Sellam, Jeremie
    RMD OPEN, 2022, 8 (01):