Systematic literature review: Machine learning techniques (machine learning)

被引:0
|
作者
Alfaro, Anderson Damian Jimenez [1 ]
Ospina, Jose Vicente Diaz [2 ]
机构
[1] Univ Catolica Luis Amigo, Ingn Ind, Medellin, Colombia
[2] Univ Catolica Luis Amigo, Ingn Financiero & Negocios, Medellin, Colombia
来源
CUADERNO ACTIVA | 2021年 / 13期
关键词
Machine learning; forecasting; business intelligence; marketing; business management;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Currently, there are a great diversity of models that allow making predictions, and for this there are machine learning techniques that can help organizations to boost their sales through these predictive models. In this article a specialized search of scientific literature is carried out that provides clarity on which are the most used techniques and under what criteria are they effective. According to the research needs, the most relevant articles have been filtered and selected to elucidate how to execute a machine learning project for sales forecasting. From the review carried out, it can be affirmed that the different machine learning techniques found in the literature are evolutions of different known techniques, which is an important component to maintain business competitiveness, and if they are well used could become sales-enhancing tools in companies organizations.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [21] Systematic reviews of machine learning in healthcare: a literature review
    Kolasa, Katarzyna
    Admassu, Bisrat
    Holownia-Voloskova, Malwina
    Kedzior, Katarzyna J.
    Poirrier, Jean-Etienne
    Perni, Stefano
    EXPERT REVIEW OF PHARMACOECONOMICS & OUTCOMES RESEARCH, 2024, 24 (01) : 63 - 115
  • [22] Cyberbullying detection and machine learning: a systematic literature review
    Vimala Balakrisnan
    Mohammed Kaity
    Artificial Intelligence Review, 2023, 56 : 1375 - 1416
  • [23] Operationalizing Machine Learning Models - A Systematic Literature Review
    Kolltveit, Ask Berstad
    Li, Jingyue
    2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR RESPONSIBLE ARTIFICIAL INTELLIGENCE (SE4RAI 2022), 2022, : 1 - 8
  • [24] A Systematic Literature Review on Machine Learning in Shared Mobility
    Teusch, Julian
    Gremmel, Jan Niklas
    Koetsier, Christian
    Johora, Fatema Tuj
    Sester, Monika
    Woisetschlaeger, David M.
    Mueller, Jorg P.
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 : 870 - 899
  • [25] Systematic Literature Review of Machine Learning for IoT Security
    Yemmanuru, Prathibha Kiran
    Yeboah, Jones
    Esther, Khakata N. G.
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 227 - 233
  • [26] Data cleaning and machine learning: a systematic literature review
    Cote, Pierre-Olivier
    Nikanjam, Amin
    Ahmed, Nafisa
    Humeniuk, Dmytro
    Khomh, Foutse
    AUTOMATED SOFTWARE ENGINEERING, 2024, 31 (02)
  • [27] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Alireza Khakpour
    Ricardo Colomo-Palacios
    Technology, Knowledge and Learning, 2021, 26 : 597 - 636
  • [28] Machine Learning in Gamification and Gamification in Machine Learning: A Systematic Literature Mapping
    Swacha, Jakub
    Gracel, Michal
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [29] Software Defect Prediction Using Supervised Machine Learning Techniques: A Systematic Literature Review
    Matloob, Faseeha
    Aftab, Shabib
    Ahmad, Munir
    Khan, Muhammad Adnan
    Fatima, Areej
    Iqbal, Muhammad
    Alruwaili, Wesam Mohsen
    Elmitwally, Nouh Sabri
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02) : 403 - 421
  • [30] A decade of research on machine learning techniques for predicting employee turnover: A systematic literature review
    Al Akasheh, Mariam
    Malik, Esraa Faisal
    Hujran, Omar
    Zaki, Nazar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238