Optimization of the resonator-induced PHASE gate for superconducting qubits

被引:8
作者
Malekakhlagh, Moein [1 ]
Shanks, William [1 ]
Paik, Hanhee [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, IBM Quantum, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
关键词
QUANTUM SUPERPOSITION; COMPUTATION; STATE;
D O I
10.1103/PhysRevA.105.022607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The resonator-induced PHASE gate is a two-qubit operation in which driving a bus resonator induces a state dependent phase shift on the qubits equivalent to an effective ZZ interaction. In principle, the dispersive nature of the gate offers flexibility for qubit parameters. However, the drive can cause resonator and qubit leakage, the physics of which cannot be fully captured using either the existing Jaynes-Cummings or Kerr models. In this paper, we adopt an ab initio model based on Josephson nonlinearity for transmon qubits. The ab initio analysis agrees well with the Kerr model in terms of capturing the effective ZZ interaction in the weak-drive dispersive regime. In addition, however, it reveals numerous leakage transitions involving high-excitation qubit states. We analyze the physics behind such novel leakage channels, demonstrate the connection with specific qubit-resonator frequency collisions, and lay out a plan toward device parameter optimization. We show that this type of leakage can be substantially suppressed using very weakly anharmonic transmons. In particular, weaker qubit anharmonicity mitigates both collision density and leakage amplitude, while larger qubit frequency moves the collisions to occur only at large anharmonicity not relevant to experiment. Our work is broadly applicable to the physics of weakly anharmonic transmon qubits coupled to linear resonators. In particular, our analysis confirms and generalizes the measurement-induced state transitions noted in Sank et al. [Phys. Rev. Lett. 117, 190503 (2016)] and lays the groundwork for both strong-drive resonator-induced PHASE gate implementation and strong-drive dispersive qubit measurement.
引用
收藏
页数:31
相关论文
共 99 条
[31]  
Hertzberg J., 2020, B AM PHYS SOC
[32]   Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors [J].
Hertzberg, Jared B. ;
Zhang, Eric J. ;
Rosenblatt, Sami ;
Magesan, Easwar ;
Smolin, John A. ;
Yau, Jeng-Bang ;
Adiga, Vivekananda P. ;
Sandberg, Martin ;
Brink, Markus ;
Chow, Jerry M. ;
Orcutt, Jason S. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[33]   Controlling the spontaneous emission of a superconducting transmon qubit [J].
Houck, A. A. ;
Schreier, J. A. ;
Johnson, B. R. ;
Chow, J. M. ;
Koch, Jens ;
Gambetta, J. M. ;
Schuster, D. I. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[34]   Two coupled harmonic oscillators on noncommutative plane [J].
Jellal, A ;
Schreiber, M ;
El Kinani, EH .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (07) :1515-1529
[35]   QuTiP: An open-source Python']Python framework for the dynamics of open quantum systems [J].
Johansson, J. R. ;
Nation, P. D. ;
Nori, Franco .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (08) :1760-1772
[36]   Demonstration of quantum volume 64 on a superconducting quantum computing system [J].
Jurcevic, Petar ;
Javadi-Abhari, Ali ;
Bishop, Lev S. ;
Lauer, Isaac ;
Bogorin, Daniela F. ;
Brink, Markus ;
Capelluto, Lauren ;
Gunluk, Oktay ;
Itoko, Toshinari ;
Kanazawa, Naoki ;
Kandala, Abhinav ;
Keefe, George A. ;
Krsulich, Kevin ;
Landers, William ;
Lewandowski, Eric P. ;
McClure, Douglas T. ;
Nannicini, Giacomo ;
Narasgond, Adinath ;
Nayfeh, Hasan M. ;
Pritchett, Emily ;
Rothwell, Mary Beth ;
Srinivasan, Srikanth ;
Sundaresan, Neereja ;
Wang, Cindy ;
Wei, Ken X. ;
Wood, Christopher J. ;
Yau, Jeng-Bang ;
Zhang, Eric J. ;
Dial, Oliver E. ;
Chow, Jerry M. ;
Gambetta, Jay M. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
[37]   Demonstration of a High-Fidelity CNOT Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression [J].
Kandala, A. ;
Wei, K. X. ;
Srinivasan, S. ;
Magesan, E. ;
Carnevale, S. ;
Keefe, G. A. ;
Klaus, D. ;
Dial, O. ;
McKay, D. C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (13)
[38]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[39]   Randomized benchmarking of quantum gates [J].
Knill, E. ;
Leibfried, D. ;
Reichle, R. ;
Britton, J. ;
Blakestad, R. B. ;
Jost, J. D. ;
Langer, C. ;
Ozeri, R. ;
Seidelin, S. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2008, 77 (01)
[40]   Charge-insensitive qubit design derived from the Cooper pair box [J].
Koch, Jens ;
Yu, Terri M. ;
Gambetta, Jay ;
Houck, A. A. ;
Schuster, D. I. ;
Majer, J. ;
Blais, Alexandre ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 76 (04)