Choices and trade-offs in inference with infectious disease models

被引:16
作者
Funk, Sebastian [1 ,2 ]
King, Aaron A. [3 ,4 ,5 ]
机构
[1] London Sch Hyg & Trop Med, Dept Infect Dis Epidemiol, London WC1E 7HT, England
[2] London Sch Hyg & Trop Med, Ctr Math Modelling Infect Dis, London WC1E 7HT, England
[3] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
英国惠康基金;
关键词
Inference; Infectious disease model; Bayesian; Frequentist; Model fitting; STOCHASTIC SIMULATION; EPIDEMIC;
D O I
10.1016/j.epidem.2019.100383
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Inference using mathematical models of infectious disease dynamics can be an invaluable tool for the interpretation and analysis of epidemiological data. However, researchers wishing to use this tool are faced with a choice of models and model types, simulation methods, inference methods and software packages. Given the multitude of options, it can be challenging to decide on the best approach. Here, we delineate the choices and trade-offs involved in deciding on an approach for inference, and discuss aspects that might inform this decision. We provide examples of inference with a dataset of influenza cases using the R packages pomp and rbi.
引用
收藏
页数:5
相关论文
共 45 条
[1]   Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda [J].
Andrianakis, Ioannis ;
Vernon, Ian R. ;
McCreesh, Nicky ;
McKinley, Trevelyan J. ;
Oakley, Jeremy E. ;
Nsubuga, Rebecca N. ;
Goldstein, Michael ;
White, Richard G. .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (01)
[2]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[3]  
[Anonymous], 1995, Chapman & Hall/CRCinterdisciplinary statistics series
[4]  
[Anonymous], YOUR MOST VALUABLE C
[5]  
[Anonymous], RBI R INTERFACE LIBB
[6]  
[Anonymous], CONT STAT INFERENCE
[7]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[8]  
Butcher JC., 2016, NUMERICAL METHODS OR
[9]   Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study [J].
Camacho, Anton ;
Ballesteros, Sebastien ;
Graham, Andrea L. ;
Carrat, Fabrice ;
Ratmann, Oliver ;
Cazelles, Bernard .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2011, 278 (1725) :3635-3643
[10]   Modelling Virus and Antibody Dynamics during Dengue Virus Infection Suggests a Role for Antibody in Virus Clearance [J].
Clapham, Hannah E. ;
Than Ha Quyen ;
Duong Thi Hue Kien ;
Dorigatti, Ilaria ;
Simmons, Cameron P. ;
Ferguson, Neil M. .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (05)