Thin-Film Solar Cells by Silicon-Based Nano-Pyramid Arrays

被引:9
作者
Huang, Zhisen [1 ]
Wang, Bo [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
关键词
carrier recombination; finite-difference time-domain; nano-pyramid array; optical absorption; silicon-based solar cell; ABSORPTION ENHANCEMENT; PERFORMANCE; NANOPARTICLES; PLASMONICS; EFFICIENCY; DESIGN;
D O I
10.1002/adts.202100586
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a high-efficiency silicon-based thin-film solar cell is proposed based on double-layer nano-pyramid (DNP) arrays. In the model, the surface and bottom of the silicon photovoltaic layer are embedded with silicon nano-pyramid array and aluminum nano-pyramid array, respectively. The optical and electrical parameters of the DNP solar cell are presented by using the 3D finite-difference time-domain (FDTD) method. The short-circuit current density (J(sc)), integrated absorption (alpha) and photoelectric conversion efficiency (eta) of the optimized DNP solar cell are 43.61 mA cm(-2), 95.20% and 27.12%, respectively. Compared with the planar solar cell, the alpha and eta of the DNP solar cell are increased by 45.31% and 15.77%, respectively. To investigate the performance of the proposed solar cell, the principle of light absorption enhancement is analyzed by spectrum and field strength distributions for the DNP structure. Furthermore, the carrier recombination and manufacturing of the DNP solar cell, and compared the structures of different arrays is studied. Further results show that the DNP structure has excellent light absorption and tolerance, which has positive significance for the development of silicon-based thin-film solar cells.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Light management in ultra-thin solar cells: a guided optimisation approach [J].
Abad, Eduardo Camarillo ;
Joyce, Hannah J. ;
Hirst, Louise C. .
OPTICS EXPRESS, 2020, 28 (26) :39093-39111
[2]   Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? [J].
Akimov, Yu A. ;
Koh, W. S. ;
Sian, S. Y. ;
Ren, S. .
APPLIED PHYSICS LETTERS, 2010, 96 (07)
[3]   Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells [J].
Akimov, Yuriy A. ;
Koh, Wee Shing .
PLASMONICS, 2011, 6 (01) :155-161
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[5]   Plasmonic solar cells [J].
Catchpole, K.R. ;
Polman, A. .
Optics Express, 2008, 16 (26) :21793-21800
[6]   An anti-reflective 1D rectangle grating on GaAs solar cell using one-step femtosecond laser fabrication [J].
Chen, Ruifang ;
Hu, Zhihui ;
Ye, Yunxia ;
Zhang, Junsong ;
Shi, Zhiguo ;
Hua, Yinqun .
OPTICS AND LASERS IN ENGINEERING, 2017, 93 :109-113
[7]   Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis [J].
Dewan, Rahul ;
Jovanov, Vladislav ;
Hamraz, Saeed ;
Knipp, Dietmar .
SCIENTIFIC REPORTS, 2014, 4
[8]   Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells [J].
Esteban, R. ;
Laroche, M. ;
Greffet, J. J. .
APPLIED PHYSICS LETTERS, 2010, 97 (22)
[9]   Modeling Light Trapping in Nanostructured Solar Cells [J].
Ferry, Vivian E. ;
Polman, Albert ;
Atwater, Harry A. .
ACS NANO, 2011, 5 (12) :10055-10064
[10]   Light trapping in ultrathin plasmonic solar cells [J].
Ferry, Vivian E. ;
Verschuuren, Marc A. ;
Li, Hongbo B. T. ;
Verhagen, Ewold ;
Walters, Robert J. ;
Schropp, Ruud E. I. ;
Atwater, Harry A. ;
Polman, Albert .
OPTICS EXPRESS, 2010, 18 (13) :A237-A245