Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals

被引:19
作者
Diykh, Mohammed [1 ,3 ,6 ]
Miften, Firas Sabar [3 ]
Abdulla, Shahab [2 ,6 ]
Deo, Ravinesh C. [1 ]
Siuly, Siuly [5 ]
Green, Jonathan H. [2 ,4 ]
Oudahb, Atheer Y. [3 ,6 ]
机构
[1] Univ Southern Queensland, Sch Math Phys & Comp, Toowoomba, Qld, Australia
[2] Univ Southern Queensland, USQ Coll, Toowoomba, Qld, Australia
[3] Univ Thi Qar, Coll Educ Pure Sci, Nasiriyah, Iraq
[4] Univ Free State, Fac Humanities, Bloemfontein, South Africa
[5] Victoria Univ, Inst Sustainable Ind & Liveable Cities, Footscray, Vic, Australia
[6] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Nasiriyah, Iraq
关键词
Electroencephalogram (EEG); Neonatal seizure detection; Morse wavelet; Local binary pattern; LOCAL BINARY PATTERNS; CLASSIFICATION; RECOGNITION; TERM; TRANSFORM; ALGORITHM;
D O I
10.1016/j.measurement.2022.110731
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Seizure detection is a particularly difficult task for neurologists to correctly identify the Electroencephalography (EEG)-based neonatal seizures in a visual manner. There is a strong demand to recognize the seizures in more automatic manner. Developing an expert seizure detection system with an acceptable performance level can partly fill this research gap. This paper proposes a new framework for the automated detection of neonatal seizures based on the Morse Wavelet approach that is coupled with a local binary pattern algorithm, and a graphbased community detection algorithm. An ensemble classifier method is designed to detect neonatal seizures prevalent in EEG signals. Our findings show that only 59 of the texture features can exhibit the abnormal increase in an EEG amplitude and the spikes notable during a seizure. The present results demonstrate that the proposed seizure detection model is more accurate for the detection of seizures compared with some of the traditional approaches.
引用
收藏
页数:13
相关论文
共 50 条
[1]   A multistage knowledge-based system for EEG seizure detection in newborn infants [J].
Aarabi, Ardalan ;
Grebe, Reinhard ;
Wallois, Fabrice .
CLINICAL NEUROPHYSIOLOGY, 2007, 118 (12) :2781-2797
[2]   An EEG-based methodology for the estimation of functional brain connectivity networks: Application to the analysis of newborn EEG seizure [J].
Abbas, Ali Kareem ;
Azemi, Ghasem ;
Ravanshadi, Samin ;
Omidvarnia, Amir .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63 (63)
[3]   Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm [J].
Abdulla, Shahab ;
Diykh, Mohammed ;
Laft, Raid Luaibi ;
Saleh, Khalid ;
Deo, Ravinesh C. .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 138
[4]   Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis [J].
Acikoglu, Merve ;
Tuncer, Seda Arslan .
MEDICAL HYPOTHESES, 2020, 135
[5]   Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel [J].
Ahmed, Rehan ;
Temko, Andriy ;
Marnane, William P. ;
Boylan, Geraldine ;
Lightbody, Gordon .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 :100-110
[6]  
Alkhafaji Sarmad K. D., 2019, Journal of Physics: Conference Series, V1279, DOI 10.1088/1742-6596/1279/1/012024
[7]   SHORT-TERM SPECTRAL ANALYSIS, SYNTHESIS, AND MODIFICATION BY DISCRETE FOURIER-TRANSFORM [J].
ALLEN, JB .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1977, 25 (03) :235-238
[8]   Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor [J].
Ansari, A. H. ;
Cherian, P. J. ;
Dereymaeker, A. ;
Matic, V. ;
Jansen, K. ;
De Wispelaere, L. ;
Dielman, C. ;
Vervisch, J. ;
Swarte, R. M. ;
Govaert, P. ;
Naulaers, G. ;
De Vos, M. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (09) :3014-3024
[9]   Neonatal Seizure Detection Using Deep Convolutional Neural Networks [J].
Ansari, Amir H. ;
Cherian, Perumpillichira J. ;
Caicedo, Alexander ;
Naulaers, Gunnar ;
De Vos, Maarten ;
Van Huffel, Sabine .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)
[10]   Development of neural responses to hearing their own name in infants at low and high risk for autism spectrum disorder [J].
Arslan, Melda ;
Warreyn, Petra ;
Dewaele, Nele ;
Wiersema, Jan R. ;
Demurie, Ellen ;
Roeyers, Herbert .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2020, 41