On Consistent Operators and Reflexivity

被引:3
作者
Azoff, Edward A. [5 ]
Li, Wing Suet [4 ]
Mbekhta, Mostafa [3 ]
Ptak, Marek [1 ,2 ]
机构
[1] Univ Agr, Inst Math, PL-30198 Krakow, Poland
[2] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
[3] Univ Lille 1, UFR Math, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
[4] Georgia Inst Technol, Dept Math, Atlanta, GA 30332 USA
[5] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Reflexive algebra; direct sum of shifts; isometry; linear order; power partial isometry; LINEAR TRANSFORMATIONS; ALGEBRAS;
D O I
10.1007/s00020-011-1894-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hilbert space operators A = circle plus(i is an element of N)A(i) which are consistent in the sense that each A (i+1) contains a copy of A (i) . The formal definition is reminiscent of the classical ordering on projections in a von Neumann algebra. It is shown that if the powers of A are simultaneously consistent, then A must be reflexive. This is applied to study reflexivity of power partial isometries.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 19 条