Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data

被引:299
作者
Reynisson, Birkir [1 ]
Barra, Carolina [1 ]
Kaabinejadian, Saghar [3 ]
Hildebrand, William H. [4 ]
Peters, Bjoern [5 ,6 ]
Nielsen, Morten [1 ,2 ]
机构
[1] Tech Univ Denmark, Dept Hlth Technol, DK-2800 Lyngby, Denmark
[2] Univ Nacl San Martin, Inst Invest Biotecnol, RA-1650 San Martin, Buenos Aires, Argentina
[3] Pure MHC LLC, Oklahoma City, OK 73104 USA
[4] Univ Oklahoma, Dept Microbiol & Immunol, Hlth Sci Ctr, Oklahoma City, OK 73104 USA
[5] Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA 92037 USA
[6] Univ Calif San Diego, Dept Med, San Diego, CA 92093 USA
关键词
machine learning; bioinformatics; immunoinformatics; immunology; MHC II; antigen presentation; mass spectrometry; immunopeptidomics; neoepitopes; PEPTIDE BINDING; HLA-DR; REVEALS; CITRULLINATION; IDENTIFICATION; MOLECULES; PATHWAYS;
D O I
10.1021/acs.jproteome.9b00874
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Major histocompatibility complex II (MHC II) molecules play a vital role in the onset and control of cellular immunity. In a highly selective process, MHC II presents peptides derived from exogenous antigens on the surface of antigen-presenting cells for T cell scrutiny. Understanding the rules defining this presentation holds critical insights into the regulation and potential manipulation of the cellular immune system. Here, we apply the NNAlign_MA machine learning framework to analyze and integrate large-scale eluted MHC II ligand mass spectrometry (MS) data sets to advance prediction of CD4+ epitopes. NNAlign_MA allows integration of mixed data types, handling ligands with multiple potential allele annotations, encoding of ligand context, leveraging information between data sets, and has pan-specific power allowing accurate predictions outside the set of molecules included in the training data. Applying this framework, we identified accurate binding motifs of more than SO MHC class II molecules described by MS data, particularly expanding coverage for DP and DQ beyond that obtained using current MS motif deconvolution techniques. Furthermore, in large-scale benchmarking, the final model termed NetMHCIIpan-4.0 demonstrated improved performance beyond current state-of-the-art predictors for ligand and CD4+ T cell epitope prediction. These results suggest that NNAlign_MA and NetMHCIIpan-4.0 are powerful tools for analysis of immunopeptidome MS data, prediction of T cell epitopes, and development of personalized immunotherapies.
引用
收藏
页码:2304 / 2315
页数:12
相关论文
共 55 条
[1]   Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction [J].
Abelin, Jennifer G. ;
Harjanto, Dewi ;
Malloy, Matthew ;
Suri, Prerna ;
Colson, Tyler ;
Goulding, Scott P. ;
Creech, Amanda L. ;
Serrano, Lia R. ;
Nasir, Gibran ;
Nasrullah, Yusuf ;
McGann, Christopher D. ;
Velez, Diana ;
Ting, Ying S. ;
Poran, Asaf ;
Rothenberg, Daniel A. ;
Chhangawala, Sagar ;
Rubinsteyn, Alex ;
Hammerbacher, Jeff ;
Gaynor, Richard B. ;
Fritsch, Edward F. ;
Greshock, Joel ;
Oslund, Rob C. ;
Barthelme, Dominik ;
Addona, Terri A. ;
Arleta, Christina M. ;
Rooney, Michael S. .
IMMUNITY, 2019, 51 (04) :766-+
[2]   Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction [J].
Abelin, Jennifer G. ;
Keskin, Derin B. ;
Sarkizova, Siranush ;
Hartigan, Christina R. ;
Zhang, Wandi ;
Sidney, John ;
Stevens, Jonathan ;
Lane, William ;
Zhang, Guang Lan ;
Eisenhaure, Thomas M. ;
Clauser, Karl R. ;
Hacohen, Nir ;
Rooney, Michael S. ;
Carr, Steven A. ;
Wu, Catherine J. .
IMMUNITY, 2017, 46 (02) :315-326
[3]   NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions [J].
Alvarez, Bruno ;
Reynisson, Birkir ;
Barra, Carolina ;
Buus, Soren ;
Ternette, Nicola ;
Connelley, Tim ;
Andreatta, Massimo ;
Nielsen, Morten .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (12) :2459-2477
[4]   Computational Tools for the Identification and Interpretation of Sequence Motifs in Immunopeptidomes [J].
Alvarez, Bruno ;
Barra, Carolina ;
Nielsen, Morten ;
Andreatta, Massimo .
PROTEOMICS, 2018, 18 (12)
[5]   Quantification of HLA-DM-Dependent Major Histocompatibility Complex of Class II Immunopeptidomes by the Peptide Landscape Antigenic Epitope Alignment Utility [J].
Alvaro-Benito, Miguel ;
Morrison, Eliot ;
Abualrous, Esam T. ;
Kuropka, Benno ;
Freund, Christian .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[6]   Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules [J].
Andreatta, Massimo ;
Jurtz, Vanessa I. ;
Kaever, Thomas ;
Sette, Alessandro ;
Peters, Bjoern ;
Nielsen, Morten .
IMMUNOLOGY, 2017, 152 (02) :255-264
[7]   GibbsCluster: unsupervised clustering and alignment of peptide sequences [J].
Andreatta, Massimo ;
Alvarez, Bruno ;
Nielsen, Morten .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W458-W463
[8]   Immunoinformatics and epitope prediction in the age of genomic medicine [J].
Backert, Linus ;
Kohlbacher, Oliver .
GENOME MEDICINE, 2015, 7
[9]   Footprints of antigen processing boost MHC class II natural ligand predictions [J].
Barra, Carolina ;
Alvarez, Bruno ;
Paul, Sinu ;
Sette, Alessandro ;
Peters, Bjoern ;
Andreatta, Massimo ;
Buus, Soren ;
Nielsen, Morten .
GENOME MEDICINE, 2018, 10
[10]   Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions [J].
Bassani-Sternberet, Michal ;
Gfellert, David .
JOURNAL OF IMMUNOLOGY, 2016, 197 (06) :2492-2499