A Mixed-Signal Control Core for a Fully Integrated Semiconductor Quantum Computer System-on-Chip

被引:31
作者
Bashir, Imran [1 ]
Asker, Mike [1 ]
Cetintepe, Cagri [2 ]
Leipold, Dirk [1 ]
Esmailiyan, Ali [2 ]
Wang, Hongying [2 ]
Siriburanon, Teerachot [2 ]
Giounanlis, Panagiotis [2 ]
Blokhina, Elena [2 ]
Pomorski, Krzysztof [2 ]
Staszewski, Bogdan [1 ,2 ]
机构
[1] Equal1 Labs, Fremont, CA 94536 USA
[2] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin 4, Ireland
来源
IEEE 45TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2019) | 2019年
关键词
D O I
10.1109/esscirc.2019.8902885
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discloses a mixed-signal control unit of a fully integrated semiconductor quantum processor SoC realized in a 22nm FD-SOI technology. Independent high-resolution DACs that set the amplitude and pulse-width of the control signals were integrated for each qubit, enabling both a programmable semi-conductor qubit operation and a per-qubit individual calibration that compensates for the process variability. The lower decoherence time of the semiconductor charge-qubits as compared to their spin-qubit counterparts was mitigated by using a high frequency of control unit operation. This is facilitated by the co-integration on the same die of the semiconductor quantum structures together with their corresponding classic control circuitry. The main challenge of achieving deep cryogenic operation for the mixed-signal classic control circuit was surpassed by using programmable local heating DACs that slightly boost the local temperature of the control blocks above the average temperature of the die, which needs to be maintained around 4 K to enable a reliable quantum operation. A staged multi-phase operation was adopted for the digital core in order to minimize the quantum decoherence originated in digital noise injection. The high-frequency clock tree and divider allows the generation of sub-20 ps fast edge control pulses with programmable widths down to 166 ps. This offers a wide quantum computation window when compared with the 1 mu s decoherence time of the charge-qubit structures.
引用
收藏
页码:125 / +
页数:4
相关论文
共 7 条
[1]  
Coma A., 2011, NPJ QUANTUM INFORM, V4, P6
[2]   Rotation and phase-shift operations for a charge qubit in a double quantum dot [J].
Fujisawa, T ;
Hayashi, T ;
Cheong, HD ;
Jeong, YH ;
Hirayama, Y .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 21 (2-4) :1046-1052
[3]   Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots [J].
Giounanlis, Panagiotis ;
Blokhina, Elena ;
Pomorski, Krzysztof ;
Leipold, Dirk R. ;
Staszewski, Robert Bogdan .
IEEE ACCESS, 2019, 7 :49262-49278
[4]  
Leipold D., 2019, AM PHYS SOC APS M
[5]   A CMOS silicon spin qubit [J].
Maurand, R. ;
Jehl, X. ;
Kotekar-Patil, D. ;
Corna, A. ;
Bohuslavskyi, H. ;
Lavieville, R. ;
Hutin, L. ;
Barraud, S. ;
Vinet, M. ;
Sanquer, M. ;
De Franceschi, S. .
NATURE COMMUNICATIONS, 2016, 7
[6]   Cryo-CMOS Circuits and Systems for Quantum Computing Applications [J].
Patra, Bishnu ;
Incandela, Rosario M. ;
van Dijk, Jeroen P. G. ;
Homulle, Harald A. R. ;
Song, Lin ;
Shahmohammadi, Mina ;
Staszewski, Robert Bogdan ;
Vladimirescu, Andrei ;
Babaie, Masoud ;
Sebastiano, Fabio ;
Charbon, Edoardo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (01) :309-321
[7]  
Vandersypen L., 2018, P INT SOL STAT CIRC, P24