The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications

被引:20
作者
Liu, Jianzhou [1 ,2 ]
Zhang, Juan [1 ,2 ]
Zhou, Lixin [1 ,2 ]
Tu, Gen [1 ,2 ]
机构
[1] Xiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schur complement; Nekrasov matrices; Diagonally dominant matrix; Bound; Determinant; NORM BOUNDS; INVERSE;
D O I
10.1016/j.amc.2017.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we estimate the Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices. As an application, we offer new bounds of the determinant for several special matrices, which improve the related results in certain case. Further, we give an estimation on the infinity norm bounds for the inverse of Schur complement of Nekrasov matrices. Finally, we introduce new methods called Schur-based super relaxation iteration (SSSOR) method and Schur-based conjugate gradient (SCG) method to solve the linear equation by reducing order. The numerical examples illustrate the effectiveness of the derived result. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 18 条
[1]  
Bailey D.W., 1969, Linear Algebra Appl., V2, P303
[2]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[3]   Infinity norm bounds for the inverse of Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Dai, Ping-Fan ;
Doroslovacki, Ksenija ;
Li, Yao-Tang .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5020-5024
[4]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[5]   A New Upper Bound on the Infinity Norm of the Inverse of Nekrasov Matrices [J].
Gao, Lei ;
Li, Chaoqian ;
Li, Yaotang .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[6]   Error bounds for linear complementarity problems of Nekrasov matrices [J].
Garcia-Esnaola, Marta ;
Manuel Pena, Juan .
NUMERICAL ALGORITHMS, 2014, 67 (03) :655-667
[7]  
Higham N.J., 1961, ACCURACY STABILITY N
[8]   On Nekrasov matrices [J].
Li, W .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) :87-96
[9]   The Schur complement of strictly doubly diagonally dominant matrices and its application [J].
Liu, Jianzhou ;
Zhang, Juan ;
Liu, Yu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) :168-183
[10]   The dominant degree and disc theorem for the Schur complement of matrix [J].
Liu, Jianzhou ;
Huang, Zejun ;
Zhang, Juan .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) :4055-4066