Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots

被引:1
作者
Heo, Jino [1 ]
Choi, Seong-Gon [1 ,2 ]
机构
[1] Chungbuk Natl Univ, Res Inst Comp & Informat Commun Ric, Chungdae Ro 1, Cheongju, South Korea
[2] Chungbuk Natl Univ, Coll Elect & Comp Engn, Chungdae Ro 1, Cheongju, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum phase estimation; Quantum algorithm; Controlled-unitary gate; Quantum dot; SINGLE-ELECTRON SPIN; FOURIER-TRANSFORM; DISCRETE LOGARITHMS; HOLE SPIN; MANIPULATION; REALIZATION; LOCKING; QUBIT;
D O I
10.1007/s11128-021-03335-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various quantum algorithms depend on quantum phase estimation (QPE) as basic blocks or main subroutines to leverage superposition and entanglement during quantum computations. The QPE algorithm estimates the unknown phase of an eigenvalue corresponding to an eigenstate of an arbitrary unitary operator. We propose the photonic scheme of a QPE scheme comprising controlled-unitary gates based on quantum dots confined in optical cavities. For the reliable performance of the proposed QPE scheme constituting an arrangement of controlled-unitary gates, we evaluate the proposed quantum dot system under the effects of vacuum noise and leaky modes in an experimental implementation of the gates.
引用
收藏
页数:21
相关论文
共 50 条
[41]   The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots [J].
Ali Hatef ;
Mahi Singh .
Nanoscale Research Letters, 5
[42]   Quantum Computers and Quantum Algorithms. Part 2. Quantum Algorithms [J].
Solovyev, V. M. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (01) :104-112
[43]   Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors (vol 8, 16, 2021) [J].
Costa, Nelson Filipe ;
Omar, Yasser ;
Sultanov, Aidar ;
Paraoanu, Gheorghe Sorin .
EPJ QUANTUM TECHNOLOGY, 2021, 8 (01)
[44]   Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities [J].
Li, Tao ;
Yang, Guo-Jian ;
Deng, Fu-Guo .
PHYSICAL REVIEW A, 2016, 93 (01)
[45]   Fast Quantum Algorithms for Trace Distance Estimation [J].
Wang, Qisheng ;
Zhang, Zhicheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (04) :2720-2733
[46]   Estimation of photonic multipolar coupling ranges among quantum dots on the basis of time–energy uncertainty [J].
Hideaki Matsueda .
Journal of Russian Laser Research, 2009, 30 :525-532
[47]   Quantum dynamics of two quantum dots in the vicinity of a photonic band edge: role of structured reservoirs and phonons [J].
Roy, Chiranjeeb .
JOURNAL OF MODERN OPTICS, 2010, 57 (07) :552-569
[48]   Quantum computing with electron spins in quantum dots [J].
Zak, Robert Andrzej ;
Roethlisberger, Beat ;
Chesi, Stefano ;
Loss, Daniel .
RIVISTA DEL NUOVO CIMENTO, 2010, 33 (07) :345-399
[49]   A drop of quantum dots in the ocean of quantum computing [J].
Deshmukh, Shradha ;
Mulay, Preeti .
COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT, 2023, 17 (01) :141-157
[50]   Cavity-quantum electrodynamics with quantum dots [J].
Kiraz, A ;
Reese, C ;
Gayral, B ;
Zhang, LD ;
Schoenfeld, WV ;
Gerardot, BD ;
Petroff, PM ;
Hu, EL ;
Imamoglu, A .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) :129-137