Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots

被引:1
作者
Heo, Jino [1 ]
Choi, Seong-Gon [1 ,2 ]
机构
[1] Chungbuk Natl Univ, Res Inst Comp & Informat Commun Ric, Chungdae Ro 1, Cheongju, South Korea
[2] Chungbuk Natl Univ, Coll Elect & Comp Engn, Chungdae Ro 1, Cheongju, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum phase estimation; Quantum algorithm; Controlled-unitary gate; Quantum dot; SINGLE-ELECTRON SPIN; FOURIER-TRANSFORM; DISCRETE LOGARITHMS; HOLE SPIN; MANIPULATION; REALIZATION; LOCKING; QUBIT;
D O I
10.1007/s11128-021-03335-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various quantum algorithms depend on quantum phase estimation (QPE) as basic blocks or main subroutines to leverage superposition and entanglement during quantum computations. The QPE algorithm estimates the unknown phase of an eigenvalue corresponding to an eigenstate of an arbitrary unitary operator. We propose the photonic scheme of a QPE scheme comprising controlled-unitary gates based on quantum dots confined in optical cavities. For the reliable performance of the proposed QPE scheme constituting an arrangement of controlled-unitary gates, we evaluate the proposed quantum dot system under the effects of vacuum noise and leaky modes in an experimental implementation of the gates.
引用
收藏
页数:21
相关论文
共 50 条
[11]   Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip [J].
Paesani, S. ;
Gentile, A. A. ;
Santagati, R. ;
Wang, J. ;
Wiebe, N. ;
Tew, D. P. ;
O'Brien, J. L. ;
Thompson, M. G. .
PHYSICAL REVIEW LETTERS, 2017, 118 (10)
[12]   Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities [J].
Heo, Jino ;
Hong, Chang-Ho ;
Kang, Min-Sung ;
Yang, Hyeon ;
Yang, Hyung-Jin ;
Hong, Jong-Phil ;
Choi, Seong-Gon .
SCIENTIFIC REPORTS, 2017, 7
[13]   The Quantum Computer Model Structure and Estimation of the Quantum Algorithms Complexity [J].
Potapov, Viktor ;
Gushanskiy, Sergei ;
Samoylov, Alexey ;
Polenov, Maxim .
COMPUTATIONAL AND STATISTICAL METHODS IN INTELLIGENT SYSTEMS, 2019, 859 :307-315
[14]   Photonic crystal nanocavity lasers with quantum dots [J].
Nomura, Masahiro ;
Iwamoto, Satoshi ;
Arakawa, Yasuhiko .
NANOPHOTONICS FOR COMMUNICATION: MATERIALS, DEVICES, AND SYSTEMS IV, 2007, 6779
[15]   Iterative quantum phase estimation on an IBM quantum processor [J].
Zhuravlev, N. A. ;
Beterov, I. I. .
QUANTUM ELECTRONICS, 2021, 51 (06) :506-510
[16]   Nuclear spin effects in semiconductor quantum dots [J].
Chekhovich, E. A. ;
Makhonin, M. N. ;
Tartakovskii, A. I. ;
Yacoby, A. ;
Bluhm, H. ;
Nowack, K. C. ;
Vandersypen, L. M. K. .
NATURE MATERIALS, 2013, 12 (06) :494-504
[17]   Quantum Dots for Quantum Information [J].
Oulton, Ruth .
2015 17TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2015,
[18]   Quantum Phase Estimation Algorithm for Finding Polynomial Roots [J].
Tansuwannont, Theerapat ;
Limkumnerd, Surachate ;
Suwanna, Sujin ;
Kalasuwan, Pruet .
OPEN PHYSICS, 2019, 17 (01) :839-849
[19]   Photonic graph state generation from quantum dots and color centers for quantum communications [J].
Russo, Antonio ;
Barnes, Edwin ;
Economou, Sophia E. .
PHYSICAL REVIEW B, 2018, 98 (08)
[20]   Quantum dots in S-scheme photocatalysts [J].
Zhu, Bicheng ;
Jiang, Chuanjia ;
Xu, Jingsan ;
Zhang, Zhenyi ;
Fu, Junwei ;
Yu, Jiaguo .
MATERIALS TODAY, 2025, 82 :251-273