Exploitation of MODTRAN 4 capabilities to predict at-sensor radiance

被引:5
作者
Cattrall, C [1 ]
Thome, KJ [1 ]
机构
[1] Univ Arizona, Remote Sensing Grp, Tucson, AZ 85721 USA
来源
OPTICAL SPECTROSCOPIC TECHNIQUES AND INSTRUMENTATION FOR ATMOSPHERIC AND SPACE RESEARCH V | 2003年 / 5157卷
关键词
aerosols; modeling; radiative transfer; remote sensing; surface reflectance; angstrom exponent;
D O I
10.1117/12.506359
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Top-of-atmosphere radiance is computed between 350 and 2500 nm for atmospheres containing one of three aerosol models (rural, maritime and dust) inherent to MODTRAN, over different surface reflectance values, and compared with those computed using a model of the same aerosol species derived from measurements by a global network of ground-based radiometers (AERONET). It is observed that even over high reflectance targets (R=0.5), care must be taken in the prescription of aerosol optical properties so as to limit uncertainty resulting from aerosols in the top-of-atmosphere radiance to less than 2%. It is found that, for grass and desert sites, use of a simple power law size distribution to compute aerosol optical properties reduces uncertainty in the computed satellite radiance to less than 1.5%. Uncertainty in the computed top-of-atmosphere radiance during vicarious sensor calibration over desert sites that may result from this simple prescription of the aerosol size distribution is thus less than uncertainty in the TOA radiance resulting from measurements of the site reflectance. The new aerosol and multiple scattering capabilities of the most recent version of MODTRAN have made such studies possible and are promising for attempts to use MODTRAN in the vicarious calibration of airborne and spaceborne sensors.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 1963, AIR CHEM RADIOACTIVI, DOI DOI 10.1002/QJ.49709038422
[2]  
Bohren C. F., 1998, ABSORPTION SCATTERIN
[3]  
d'Almeida G.A., 1991, ATMOSPHERIC AEROSOLS
[4]  
Davies C. N., 1974, Journal of Aerosol Science, V5, P293, DOI 10.1016/0021-8502(74)90063-9
[5]  
Dubovik O, 2002, J ATMOS SCI, V59, P590, DOI 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO
[6]  
2
[8]   CLEAR WATER RADIANCES FOR ATMOSPHERIC CORRECTION OF COASTAL ZONE COLOR SCANNER IMAGERY [J].
GORDON, HR ;
CLARK, DK .
APPLIED OPTICS, 1981, 20 (24) :4175-4180
[9]   AERONET - A federated instrument network and data archive for aerosol characterization [J].
Holben, BN ;
Eck, TF ;
Slutsker, I ;
Tanre, D ;
Buis, JP ;
Setzer, A ;
Vermote, E ;
Reagan, JA ;
Kaufman, YJ ;
Nakajima, T ;
Lavenu, F ;
Jankowiak, I ;
Smirnov, A .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (01) :1-16
[10]   Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect [J].
Kaufman, YJ ;
Tanre, D ;
Gordon, HR ;
Nakajima, T ;
Lenoble, J ;
Frouin, R ;
Grassl, H ;
Herman, BM ;
King, MD ;
Teillet, PM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D14) :16815-16830