Bioethanol Fermentation from Sugarcane Bagasse Using Ragi Tape

被引:0
|
作者
Soetarto, Endang Sutariningsih [1 ]
Putri, Riana Nindita [1 ]
机构
[1] Univ Gadjah Mada, Fac Biol, Microbiol Lab, Jl Teknika Selatan 55281, Yogyakarta, Indonesia
来源
TOWARDS THE SUSTAINABLE USE OF BIODIVERSITY IN A CHANGING ENVIRONMENT: FROM BASIC TO APPLIED RESEARCH | 2016年 / 1744卷
关键词
Bioethanol; Saccharomyces sp; sugarcane bagasse; xylan; xylose; yeast; ETHANOL-PRODUCTION; XYLOSE; TECHNOLOGIES; PRETREATMENT; HYDROLYSATE;
D O I
10.1063/1.4953494
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The purpose of the research was to use sugarcane bagasse as a fermentation substrate for bioethanol production and to determine the effect of yeast types from traditional inoculum for tapay making (ragi) on ethanol yield. Sugarcane bagasse was composed of lignocellulosic materials and collected from a sugar factory in Yogyakarta. Yeasts from ragi were used to break down the cellulose containing in sugarcane bagasse. Dilute alkali hydrolysis of sugarcane bagasse was performed to obtain sugarcane bagasse cellulosic hydrolysate. This hydrolysate was supplemented with nutrient formulations to prepare the fermentation medium to the yeast activity. Saccharomyces cerevisieae pombe SPJ, strain YRT-01, strain YRT-02 and YRT-03 (isolated from Ragi) were used in fermentations carried out using batch culture system in Erlenmeyer flasks incubated in a rotator shaker (100 rpm for 72 h) at room temperature. Yeast activity was determined based on their growth (OD660 (nm)) and reducing sugar concentration (A(540) (nm) (-) (575nm)) with xylose or glucose as standard. The ethanol concentration was determined by Conway method. The results showed that bagasse hidrolyzate contains (6.9 to 8.0) g . L-1 of xylose and glucose. The highest ethanol concentration was obtained 1.387 % by strain YRT-03 during 4 d incubation, indicating that yeast strain YRT-03 was the promising yeast for sugarcane bagasse fermentation to produce ethanol under temperature at 32 degrees C and pH 5.5. This strain resembles to Saccharomyces cerevisiae pombe.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica
    Ong, Khai Lun
    Li, Chong
    Li, Xiaotong
    Zhang, Yu
    Xu, Jingliang
    Lin, Carol Sze Ki
    BIOCHEMICAL ENGINEERING JOURNAL, 2019, 148 : 108 - 115
  • [32] Optimization of simultaneous saccharification and fermentation in bioethanol production from sugarcane bagasse hydrolyse by Saccharomyces cerevisiae BTCC 3 using response surface methodology
    Thontowi, Ahmad
    Perwitasari, U.
    Kholida, L. N.
    Fahrurrozi
    Yopi
    Prasetya, B.
    INTERNATIONAL BIOTECHNOLOGY CONFERENCE ON ESTATE CROPS 2017, 2018, 183
  • [33] Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF
    Liu, Yunyun
    Xu, Jingliang
    Zhang, Yu
    Yuan, Zhenhong
    He, Minchao
    Liang, Cuiyi
    Zhuang, Xinshu
    Xie, Jun
    ENERGY, 2015, 90 : 1199 - 1205
  • [34] Production and Characterization of Bioethanol from Sugarcane Bagasse as Alternative Energy Sources
    Saka, Abdulkareem A.
    Afolabi, Ayo S.
    Ogochukwu, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL II, 2015, : 876 - 880
  • [35] Using high pressure processing (HPP) to pretreat sugarcane bagasse
    Castanon-Rodriguez, J. F.
    Torrestiana-Sanchez, B.
    Montero-Lagunes, M.
    Portilla-Arias, J.
    Ramirez de Leon, J. A.
    Aguilar-Uscanga, M. G.
    CARBOHYDRATE POLYMERS, 2013, 98 (01) : 1018 - 1024
  • [36] Production of bioethanol from sugarcane bagasse using yeast strains: A kinetic study
    Iram, Mehvish
    Asghar, Umar
    Irfan, Muhammad
    Huma, Zile
    Jamil, Saba
    Nadeem, Muhammad
    Syed, Quratulain
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (03) : 364 - 372
  • [37] Optimization of fermentation condition in bioethanol production from waste potato and product characterization
    Tenkolu, Getachew Alemu
    Kuffi, Kumsa Delessa
    Gindaba, Gadissa Tokuma
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (04) : 5205 - 5223
  • [38] Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol
    Sindhu, Raveendran
    Binod, Parameswaran
    Satyanagalakshmi, Karri
    Janu, Kanakambaran Usha
    Sajna, Kuttavan Valappil
    Kurien, Noble
    Sukumaran, Rajeev Kumar
    Pandey, Ashok
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 162 (08) : 2313 - 2323
  • [39] Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol
    Raveendran Sindhu
    Parameswaran Binod
    Karri Satyanagalakshmi
    Kanakambaran Usha Janu
    Kuttavan Valappil Sajna
    Noble Kurien
    Rajeev Kumar Sukumaran
    Ashok Pandey
    Applied Biochemistry and Biotechnology, 2010, 162 : 2313 - 2323
  • [40] A review of sugarcane bagasse for second-generation bioethanol and biopower production
    Bezerra, Tais Lacerda
    Ragauskas, Art J.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2016, 10 (05): : 634 - 647