First Milnor cohomology of hyperplane arrangements

被引:0
作者
Budur, Nero [1 ]
Dimca, Alexandru [2 ]
Saito, Morihiko [3 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Nice Sophia Antipolis, UMR CNRS 6621, Lab JA Dieudonne, F-06108 Nice 02, France
[3] Kyoto Univ, RIMS, Kyoto 6068502, Japan
来源
TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES | 2011年 / 538卷
关键词
hyperplane arrangement; Milnor fiber; monodromy; multiplier ideal; MULTIPLIER IDEALS; LOCAL SYSTEMS; COMPLEMENTS; VARIETIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a combinatorial formula for a lower bound of the dimension of the non-unipotent monodromy part of the first Manor cohomology of a hyperplane arrangement satisfying some combinatorial conditions. This gives exactly its dimension if a stronger combinatorial condition is satisfied. We also prove a non-combinatorial formula for the dimension of the non-unipotent part of the first Milnor cohomology, which apparently depends on the position of the singular points. The latter generalizes a formula previously obtained by the second named author.
引用
收藏
页码:279 / +
页数:3
相关论文
共 50 条
[41]   Deformations of Coxeter hyperplane arrangements [J].
Postnikov, A ;
Stanley, RP .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :544-597
[42]   Superspace coinvariants and hyperplane arrangements [J].
Angarone, Robert ;
Commins, Patricia ;
Karn, Trevor ;
Murai, Satoshi ;
Rhoades, Brendon .
ADVANCES IN MATHEMATICS, 2025, 467
[43]   LOGARITHMIC DISCRIMINANTS OF HYPERPLANE ARRANGEMENTS [J].
Kayser, L. ;
Kretschmer, A. ;
Telen, S. .
MATEMATICHE, 2025, 80 (01) :325-346
[44]   Homology graph of real arrangements and monodromy of Milnor fiber [J].
Bailet, Pauline ;
Settepanella, Simona .
ADVANCES IN APPLIED MATHEMATICS, 2017, 90 :46-85
[45]   Branched Polymers and Hyperplane Arrangements [J].
Meszaros, Karola ;
Postnikov, Alexander .
DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (01) :22-38
[46]   Random walks and hyperplane arrangements [J].
Brown, KS ;
Diaconis, P .
ANNALS OF PROBABILITY, 1998, 26 (04) :1813-1854
[47]   Projection Volumes of Hyperplane Arrangements [J].
Caroline J. Klivans ;
Ed Swartz .
Discrete & Computational Geometry, 2011, 46
[48]   The Monodromy Conjecture for hyperplane arrangements [J].
Budur, Nero ;
Mustata, Mircea ;
Teitler, Zach .
GEOMETRIAE DEDICATA, 2011, 153 (01) :131-137
[49]   Cell Complexities in Hyperplane Arrangements [J].
Boris Aronov ;
Micha Sharir .
Discrete & Computational Geometry, 2004, 32 :107-115
[50]   K-STABILITY OF LOG FANO HYPERPLANE ARRANGEMENTS [J].
Fujita, Kento .
JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (04) :603-630