Some results on *-differential identities in prime rings

被引:0
|
作者
Kumar, Deepak [1 ]
Bhushan, Bharat [1 ]
Sandhu, Gurninder S. [2 ]
机构
[1] Punjabi Univ, Dept Math, PO 147002, Patiala 147002, Punjab, India
[2] Patel Mem Natl Coll, Dept Math, PO 140401, Rajpura 140401, Punjab, India
关键词
Prime ring; generalized derivation; involution; GENERALIZED DERIVATIONS;
D O I
10.1142/S1793557122501595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with involution * of the second kind. An additive mapping F : R -> R is called generalized derivation if there exists a unique derivation d such that F(xy) = F(x)y + xd(y) for all x,y is an element of R. In this paper, we investigate the structure of R and describe the possible forms of generalized derivations of R that satisfy specific *-differential identities. Precisely, we study the following situations: (i) F(x) omicron G(x*) = 0, (ii) F(x) omicron x* = x omicron G(x*), (iii) F(x omicron x*) = G(x) omicron G(x*), (iv) F(x) omicron G(x*) = x omicron x* for all x is an element of R. Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Identities related to generalized derivation on ideal in prime rings
    Tiwari S.K.
    Sharma R.K.
    Dhara B.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 809 - 821
  • [42] Identities with generalized derivations in prime rings
    Tiwari, S. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 207 - 223
  • [43] Differential identities involving three generalized derivations on prime rings and Banach algebras
    Bouchannafa, Karim
    Hermas, Abderrahman
    Oukhtite, Lahcen
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [44] Some Generalized Identities on Prime Rings and their Application for the Solution of Annihilating and Centralizing Problems
    De Filippis, Vincenzo
    Prajapati, B.
    Tiwari, S. K.
    QUAESTIONES MATHEMATICAE, 2022, 45 (02) : 267 - 305
  • [45] Identities involving skew Lie product and a pair of generalized derivations in prime rings with involution
    Bhushan, B.
    Sandhu, G. S.
    Kumar, D.
    ARMENIAN JOURNAL OF MATHEMATICS, 2021, 13 (09): : 1 - 18
  • [46] Identities with Product of Generalized Derivations of Prime Rings
    Carini, Luisa
    De Filipps, Vincenzo
    Scudo, Giovanni
    ALGEBRA COLLOQUIUM, 2013, 20 (04) : 711 - 720
  • [47] Generalized Derivations Vanishing on Co-Commutator Identities in Prime Rings
    Dhara, Basudeb
    FILOMAT, 2021, 35 (06) : 1785 - 1801
  • [48] On the structure of some nonlinear maps in prime *-rings
    Siddeeque, Mohammad Aslam
    Shikeh, Abbas Hussain
    Bhat, Raof Ahmad
    FILOMAT, 2024, 38 (01) : 261 - 269
  • [49] Some Identities in Quotient Rings
    EL Hamdaoui, Mohammadi
    Boua, Abdelkarim
    Sandhu, Gurninder S.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19
  • [50] Some results concerning symmetric generalized skew biderivations on prime rings
    Carini, Luis
    De Filippis, Vincenzo
    Scudo, Giovanni
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 89 (04): : 449 - 467