Some results on *-differential identities in prime rings

被引:0
|
作者
Kumar, Deepak [1 ]
Bhushan, Bharat [1 ]
Sandhu, Gurninder S. [2 ]
机构
[1] Punjabi Univ, Dept Math, PO 147002, Patiala 147002, Punjab, India
[2] Patel Mem Natl Coll, Dept Math, PO 140401, Rajpura 140401, Punjab, India
关键词
Prime ring; generalized derivation; involution; GENERALIZED DERIVATIONS;
D O I
10.1142/S1793557122501595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with involution * of the second kind. An additive mapping F : R -> R is called generalized derivation if there exists a unique derivation d such that F(xy) = F(x)y + xd(y) for all x,y is an element of R. In this paper, we investigate the structure of R and describe the possible forms of generalized derivations of R that satisfy specific *-differential identities. Precisely, we study the following situations: (i) F(x) omicron G(x*) = 0, (ii) F(x) omicron x* = x omicron G(x*), (iii) F(x omicron x*) = G(x) omicron G(x*), (iv) F(x) omicron G(x*) = x omicron x* for all x is an element of R. Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] SOME RESULTS FOR ENDOMORPHISMS IN PRIME RINGS
    Boua, Abdelkarim
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (06): : 943 - 950
  • [32] SOME RESULTS ON PRIME RINGS AND (σ, τ) - LIE IDEALS
    Gueven, E.
    Soytuerk, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2007, 36 (01): : 19 - 25
  • [33] Identities involving generalized derivations in prime rings
    Yadav, V. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 259 - 270
  • [34] Identities involving generalized derivations in prime rings
    V. K. Yadav
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 259 - 270
  • [35] Some results in prime rings involving endomorphisms
    Boua, Abdelkarim
    Raji, Abderrahmane
    El Hamdaoui, Mohammadi
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [36] Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings
    Dhara, Basudeb
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 25 - 36
  • [37] On some equations in prime rings
    Fosner, Maja
    Vukman, Joso
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (02): : 135 - 150
  • [38] Identities with generalized derivations in prime rings
    S. K. Tiwari
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 207 - 223
  • [39] Identities with generalized derivations on multilinear polynomials in prime rings
    Dhara B.
    Kar S.
    Pradhan K.G.
    Afrika Matematika, 2016, 27 (7-8) : 1347 - 1360
  • [40] Engel type identities with generalized derivations in prime rings
    Dhara, Basudeb
    Pradhan, Krishna Gopal
    Tiwari, Shailesh Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)