Microwave-crystallization of amorphous silicon film using carbon-overcoat as susceptor

被引:11
作者
Fong, S. C. [1 ]
Chao, H. W. [2 ]
Chang, T. H. [2 ]
Leu, H. J. [3 ]
Tsai, I. S. [3 ]
Cheng, S. Y. [5 ]
Wang, C. Y. [5 ]
Chin, T. S. [1 ,4 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[3] Feng Chia Univ, Nanotechnol Res Ctr, Taichung 40724, Taiwan
[4] Feng Chia Univ, Dept Mat Sci & Engn, Taichung 40724, Taiwan
[5] Ind Technol Res Inst, Mat & Chem Engn Lab, Chutung 31000, Taiwan
关键词
Microwave heating; Amorphous silicon; Poly-crystalline Si; Dielectric properties; Carbon-overcoat; INDUCED LATERAL CRYSTALLIZATION; SOLID-PHASE CRYSTALLIZATION; POLYCRYSTALLINE SI FILMS; THIN-FILMS; TEMPERATURE;
D O I
10.1016/j.tsf.2011.02.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Crystallization of amorphous silicon (a-Si:H) film is extremely important in many aspects of electronic devices and has been heavily explored. We demonstrate that microwave irradiation, 200 W, is able to fast-crystallize a-Si:H film using as susceptor carbon-overcoat which contains graphite and carbon nano-tube. X-ray diffraction and Raman spectra reveal that nearly full crystallization is reached within 90 s. Microwave absorption by the carbon-overcoat generates thermal energy which heats up a-Si:H film to a threshold temperature 440 +/- 10 degrees C required for initiation of microwave crystallization. Dielectric properties of a-Si:H film facilitate its self-heating and nucleation of Si crystallites at above the threshold temperature. This method is extendable to fast-crystallize a-Si:H film on a remote and large-area basis. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4196 / 4200
页数:5
相关论文
共 22 条
[1]   Microstructural evolution of polycrystalline Si films during Ni-silicide-mediated lateral crystallization [J].
Ahn, JH ;
Eom, JH ;
Ahn, BT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) :H141-H144
[2]   Crystallization of amorphous silicon thin films using a viscous nickel solution [J].
Ahn, JH ;
Ahn, BT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (09) :H115-H119
[3]  
[Anonymous], SEMICOND SCI TECHNOL
[4]   Can "microwave effects" be explained by enhanced diffusion? [J].
Antonio, Christian ;
Deam, Rowan T. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (23) :2976-2982
[5]  
Choi YW, 1999, IEEE ELECTR DEVICE L, V20, P2, DOI 10.1109/55.737555
[6]   Growth of Si0.75Ge0.25 alloy nanowires in a separated H-field by microwave processing [J].
Dube, Charu Lata ;
Kashyap, Subhash C. ;
Dube, D. C. ;
Agarwal, D. K. .
APPLIED PHYSICS LETTERS, 2009, 94 (21)
[7]   Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements [J].
Farhi, G ;
Aoucher, M ;
Mohammed-Brahim, T .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 72 (1-4) :551-558
[8]   Crystallization of amorphous Si film by microwave annealing with SiC susceptors [J].
Fong, S. C. ;
Wang, C. Y. ;
Chang, T. H. ;
Chin, T. S. .
APPLIED PHYSICS LETTERS, 2009, 94 (10)
[9]   Increased lateral crystallization width during nickel induced lateral crystallization of amorphous silicon using fluorine implantation [J].
Hakim, M. M. A. ;
Ashburn, P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (08) :H734-H742
[10]  
HAQUE MS, 1994, J APPL PHYS, V75, P3928, DOI 10.1063/1.356039