Mitochondrial formation of reactive oxygen species

被引:3696
作者
Turrens, JF [1 ]
机构
[1] Univ S Alabama, Dept Biomed Sci, Mobile, AL 36688 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 552卷 / 02期
关键词
D O I
10.1113/jphysiol.2003.049478
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion(O-2(-).). Even though O-2(-). is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 108 条
[11]   THE PARTICIPATION OF COENZYME-Q IN FREE-RADICAL PRODUCTION AND ANTIOXIDATION [J].
BEYER, RE .
FREE RADICAL BIOLOGY AND MEDICINE, 1990, 8 (06) :545-565
[12]   MITOCHONDRIAL LIPID-PEROXIDATION BY CUMENE HYDROPEROXIDE AND ITS PREVENTION BY SUCCINATE [J].
BINDOLI, A ;
CAVALLINI, L ;
JOCELYN, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 681 (03) :496-503
[13]  
Bohr V, 1998, TOXICOL LETT, V103, P47
[14]   Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males [J].
Borrás, C ;
Sastre, J ;
García-Sala, D ;
Lloret, A ;
Pallardó, FV ;
Viña, J .
FREE RADICAL BIOLOGY AND MEDICINE, 2003, 34 (05) :546-552
[15]   ROLE OF UBIQUINONE IN MITOCHONDRIAL GENERATION OF HYDROGEN-PEROXIDE [J].
BOVERIS, A ;
CADENAS, E ;
STOPPANI, AOM .
BIOCHEMICAL JOURNAL, 1976, 156 (02) :435-444
[16]   CELLULAR PRODUCTION OF HYDROGEN-PEROXIDE [J].
BOVERIS, A ;
CHANCE, B ;
OSHINO, N .
BIOCHEMICAL JOURNAL, 1972, 128 (03) :617-&
[17]   REACTION BETWEEN SUPEROXIDE ANION RADICAL AND CYTOCHROME-C [J].
BUTLER, J ;
JAYSON, GG ;
SWALLOW, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 408 (03) :215-222
[18]   Mitochondrial free radical generation, oxidative stress, and aging [J].
Cadenas, E ;
Davies, KJA .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 29 (3-4) :222-230
[19]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[20]   Communication -: Superoxide in apoptosis -: Mitochondrial generation triggered by cytochrome c loss [J].
Cai, JY ;
Jones, DP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) :11401-11404