Weak Error for Stable Driven Stochastic Differential Equations: Expansion of the Densities

被引:16
作者
Konakov, Valentin [2 ]
Menozzi, Stephane [1 ]
机构
[1] Univ Paris 07, LPMA, F-75013 Paris, France
[2] Acad Sci, CEMI, Moscow 117418, Russia
关键词
Symmetric stable processes; Parametrix; Euler scheme; EULER SCHEME; LIMIT-THEOREMS; APPROXIMATION; DIFFUSIONS;
D O I
10.1007/s10959-010-0291-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a multidimensional stochastic differential equation of the form X(t) = x + integral(t)(0) b(X(s-))ds + integral(t)(0) f (X(s-))dZ(s), where (Z (s) ) (s >= 0) is a symmetric stable process. Under suitable assumptions on the coefficients, the unique strong solution of the above equation admits a density with respect to Lebesgue measure, and so does its Euler scheme. Using a parametrix approach, we derive an error expansion with respect to the time step for the difference of these densities.
引用
收藏
页码:454 / 478
页数:25
相关论文
共 27 条
[1]  
[Anonymous], STOCHASTIC ANAL APPL
[2]  
[Anonymous], 1963, Markov Processes
[3]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[4]  
BALLY V., 1996, Monte Carlo Methods Appl, V2, P93, DOI [10.1515/mcma.1996.2.2.93, DOI 10.1515/MCMA.1996.2.2.93]
[5]  
Bichteler K., 1987, Stochastics Monographs, V2
[6]  
Breiman L., 1968, PROBABILITY
[7]  
Feller W., 1966, An introduction to probability theory and its applications, V2
[8]  
Friedman A., 1983, Partial Differential Equations
[9]   Euler scheme and tempered distributions [J].
Guyon, Julien .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (06) :877-904
[10]   Error analysis for approximation of stochastic differential equations driven by Poisson random measures [J].
Hausenblas, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :87-113