A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

被引:8
作者
Griffiths, M. K. [1 ,3 ]
Fedun, V. [2 ,3 ]
Erdelyi, R. [3 ]
机构
[1] Univ Sheffield, Corp Informat & Comp Serv, Sheffield S10 2FN, S Yorkshire, England
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[3] Univ Sheffield, Sch Math & Stat, SP2RC, Sheffield S7 3RH, S Yorkshire, England
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
Numerical simulations; magnetohydrodynamics; computer unified device architecture; graphical processing units; NVIDIA; Sheffield advanced code; the Sheffield magnetohydrodynamics algorithm using GPUs; versatile advection code; EFFICIENT MAGNETOHYDRODYNAMIC SIMULATIONS; MAGNETOACOUSTIC WAVE-PROPAGATION; VERSATILE ADVECTION CODE; ALFVEN WAVES; NUMERICAL SIMULATIONS; SOLAR; SCHEMES; FLOWS; TESTS;
D O I
10.1007/s12036-015-9328-y
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
引用
收藏
页码:197 / 223
页数:27
相关论文
共 45 条
[1]  
[Anonymous], 2012, APPL GPU COMPUTING S
[2]   AN UPWIND DIFFERENCING SCHEME FOR THE EQUATIONS OF IDEAL MAGNETOHYDRODYNAMICS [J].
BRIO, M ;
WU, CC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 75 (02) :400-422
[3]   A 3D MHD model of astrophysical flows: Algorithms, tests and parallelisation [J].
Caunt, SE ;
Korpi, MJ .
ASTRONOMY & ASTROPHYSICS, 2001, 369 (02) :706-728
[4]   NUMERICAL SIMULATIONS OF IMPULSIVELY GENERATED ALFVEN WAVES IN SOLAR MAGNETIC ARCADES [J].
Chmielewski, P. ;
Murawski, K. ;
Musielak, Z. E. ;
Srivastava, A. K. .
ASTROPHYSICAL JOURNAL, 2014, 793 (01)
[5]   Pulse-driven non-linear Alfven waves and their role in the spectral line broadening [J].
Chmielewski, P. ;
Srivastava, A. K. ;
Murawski, K. ;
Musielak, Z. E. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (01) :40-49
[6]  
Farber R, 2011, CUDA APPLICATION DESIGN AND DEVELOPMENT, P1
[7]   FREQUENCY FILTERING OF TORSIONAL ALFVEN WAVES BY CHROMOSPHERIC MAGNETIC FIELD [J].
Fedun, V. ;
Verth, G. ;
Jess, D. B. ;
Erdelyi, R. .
ASTROPHYSICAL JOURNAL LETTERS, 2011, 740 (02)
[8]   MHD waves generated by high-frequency photospheric vortex motions [J].
Fedun, V. ;
Shelyag, S. ;
Verth, G. ;
Mathioudakis, M. ;
Erdelyi, R. .
ANNALES GEOPHYSICAE, 2011, 29 (06) :1029-1035
[9]   NUMERICAL MODELING OF FOOTPOINT-DRIVEN MAGNETO-ACOUSTIC WAVE PROPAGATION IN A LOCALIZED SOLAR FLUX TUBE [J].
Fedun, V. ;
Shelyag, S. ;
Erdelyi, R. .
ASTROPHYSICAL JOURNAL, 2011, 727 (01)
[10]   Oscillatory Response of the 3D Solar Atmosphere to the Leakage of Photospheric Motion [J].
Fedun, Viktor ;
Erdelyi, Robert ;
Shelyag, Sergiy .
SOLAR PHYSICS, 2009, 258 (02) :219-241