Rogue waves for a coupled nonlinear Schrodinger system in a multi-mode fibre

被引:5
作者
Li, Hui-Min [1 ,2 ]
Tian, Bo [1 ,2 ]
Wang, Deng-Shan [3 ]
Sun, Wen-Rong [1 ,2 ]
Xie, Xi-Yang [1 ,2 ]
Liu, Lei [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Optical fibre; coupled nonlinear Schrodinger system; generalized Darboux transformation; gauge transformation; nth-order rogue-wave solutions; SOLITONS; EQUATION;
D O I
10.1080/09500340.2016.1177617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we investigate the rogue waves for an integrable coupled nonlinear Schrodinger (CNLS) system with the self-phase modulation, cross-phase modulation and four-wave mixing term, which can describe the propagation of optical waves in a multi-mode fibre. We construct a generalized Darboux transformation (GDT) for the CNLS system and find a gauge transformation which converts the Lax pair into the constant-coefficient differential equations. Solving those equations, we can obtain the vector solutions of the Lax pair. Using the GDT, we derive an iterative formula for the nth-order rogue-wave solutions for the CNLS system. We derive the first-and second-order rogue-wave solutions for the CNLS system and analyse the profiles for the rogue waves with respect to the self-phase modulation term a, cross-phase modulation term c and four-wave mixing term b, respectively. The rogue waves become thinner with the increase in the value for the real part of b and that the effect of a or c on the rogue waves is the same as the one of the real part of b.
引用
收藏
页码:1924 / 1931
页数:8
相关论文
共 29 条
[1]   Vortical Freak Waves in Water Under External Pressure Action [J].
Abrashkin, Anatoly ;
Soloviev, Alexander .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)
[2]   Extreme waves that appear from nowhere: On the nature of rogue waves [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICS LETTERS A, 2009, 373 (25) :2137-2145
[3]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[4]  
[Anonymous], 1974, Sov. Phys. JETP
[5]   Optical rogue waves in whispering-gallery-mode resonators [J].
Coillet, Aurelien ;
Dudley, John ;
Genty, Goery ;
Larger, Laurent ;
Chembo, Yanne K. .
PHYSICAL REVIEW A, 2014, 89 (01)
[6]   Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium [J].
Ganshin, A. N. ;
Efimov, V. B. ;
Kolmakov, G. V. ;
Mezhov-Deglin, L. P. ;
McClintock, P. V. E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[7]   Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrodinger-Maxwell-Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre [J].
Gao, Zhe ;
Gao, Yi-Tian ;
Su, Chuan-Qi ;
Wang, Qi-Min ;
Mao, Bing-Qing .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (01) :9-20
[8]   Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrodinger Equations [J].
Guo Bo-Ling ;
Ling Li-Ming .
CHINESE PHYSICS LETTERS, 2011, 28 (11)
[9]   A Model-Based Image Reconstruction Algorithm With Simultaneous Beam Hardening Correction for X-Ray CT [J].
Jin, Pengchong ;
Bouman, Charles A. ;
Sauer, Ken D. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2015, 1 (03) :200-216
[10]   Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrodinger equations [J].
Kanna, T ;
Lakshmanan, M ;
Dinda, PT ;
Akhmediev, N .
PHYSICAL REVIEW E, 2006, 73 (02)