Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces

被引:7
作者
Aghili, Farhad [1 ]
机构
[1] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2011年 / 6卷 / 03期
关键词
MULTIBODY SYSTEMS; DIRECT DYNAMICS; ALGORITHM; INVERSE;
D O I
10.1115/1.4002689
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The equality and inequality constraints on constraint force and/or the actuator force/torque arise in several robotic applications, for which different controllers have been specifically developed. This paper presents a unified approach to control a rather general class of robotic systems with closed loops under a set of linear equality and inequality constraints using the notion of projection operator. The controller does not require the kinematic constraints to be independent, i.e., systems with time-varying topology can be dealt with, while demanding minimum-norm actuation force or torque in the case that the system becomes redundant. The orthogonal decomposition of the control input force yields the null-space component and its orthogonal complement. The null-space component is obtained using the projected inverse dynamics control law, while the orthogonal complement component is found through solving a quadratic programming problem, in which the equality and inequality constraints are derived to be equivalent to the originally specified ones. Finally, a case study is presented to demonstrate how the control technique can be applied to multi-arms manipulation of an object. [DOI: 10.1115/1.4002689]
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Aghili F, 2003, IEEE INT CONF ROBOT, P4035
[2]   A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: Applications to control and simulation [J].
Aghili, F .
IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (05) :834-849
[3]  
Aghili F., 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), P3288
[4]   Projection-Based Control of Parallel Manipulators [J].
Aghili, Farhad .
2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, :5763-5769
[5]  
Boyd S., 2004, Convex Optimization, P152
[6]   On the control of finite-dimensional mechanical systems with unilateral constraints [J].
Brogliato, B ;
Niculescu, SI ;
Orhant, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (02) :200-215
[7]  
Chessé S, 2001, IEEE INT CONF ROBOT, P2499, DOI 10.1109/ROBOT.2001.932998
[8]   An active set quadratic programming algorithm for real-time model predictive control [J].
Das, Indraneel .
OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (05) :833-849
[9]   Motion control of a tendon-based parallel manipulator using optimal tension distribution [J].
Fang, SQ ;
Franitza, D ;
Torlo, M ;
Bekes, F ;
Hiller, M .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2004, 9 (03) :561-568
[10]  
Golub G. H., 1996, MATRIX COMPUTATIONS