NDE applications of compressed sensing, signal decomposition and echo estimation

被引:4
作者
Lu, Yufeng [1 ]
Demirli, Ramazan [2 ]
Saniie, Jafar [3 ]
机构
[1] Bradley Univ, Dept Elect & Comp Engn, Peoria, IL 61625 USA
[2] Villanova Univ, Ctr Adv Commun, Villanova, PA 19085 USA
[3] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
来源
2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2014年
关键词
Ultrasonic NDE; compressed sensing; echo parameter estimation; signal decomposition; MODEL-BASED ESTIMATION; FINITE RATE; RECONSTRUCTION;
D O I
10.1109/ULTSYM.2014.0479
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this investigation, a compressed sensing (CS) sampling scheme is closely incorporated into ultrasound signal decomposition. The CS is used to exploit the sparsity of ultrasound echo signals and thereby significantly reduce the sampling rate with 20-30 times lower than the Nyquist rate. Furthermore, the time-of-arrivals (TOAs) of dominant echoes are estimated with the sparse sampling. The estimated TOAs along with a priori information of the transducers are used for model-based signal decomposition on the incomplete ultrasonic data, where Gaussian Chirplet (GC), a commonly used echo model, is adopted. Parameters of GC echoes are estimated for pattern recognition and defect characterization in the presence of noise with SNR as low as -5 dB. Through an experimental study, the decomposition results and estimated parameters confirm the robustness and effectiveness of the proposed technique. The study has a broad range of application in signal analysis including sparse representation, parameter estimation, and defect detection.
引用
收藏
页码:1928 / 1931
页数:4
相关论文
共 15 条
  • [1] Sparse sampling of signal innovations
    Blu, Thierry
    Dragotti, Pier-Luigi
    Vetterli, Martin
    Marziliano, Pina
    Coulot, Lionel
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 31 - 40
  • [2] Ultrasonic data compression via parameter estimation
    Cardoso, G
    Saniie, J
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (02) : 313 - 325
  • [3] Model-based estimation of ultrasonic echoes part II: Nondestructive evaluation applications
    Demirli, R
    Saniie, J
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (03) : 803 - 811
  • [4] Model-based estimation of ultrasonic echoes part I: Analysis and algorithms
    Demirli, R
    Saniie, J
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (03) : 787 - 802
  • [5] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [6] Compressive Diffuse Optical Tomography: Noniterative Exact Reconstruction Using Joint Sparsity
    Lee, Okkyun
    Kim, Jong Min
    Bresler, Yoram
    Ye, Jong Chul
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) : 1129 - 1142
  • [7] Lu Y, 2013, J Signal Inf Process, V4, P149
  • [8] A successive parameter estimation algorithm for chirplet signal decomposition
    Lu, Yufeng
    Demirli, Rarnazan
    Cardoso, Guilherme
    Saniie, Jafar
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2006, 53 (11) : 2121 - 2131
  • [9] Fractional Fourier Transform for Ultrasonic Chirplet Signal Decomposition
    Lu, Yufeng
    Kasaeifard, Alireza
    Oruklu, Erdal
    Saniie, Jafar
    [J]. ADVANCES IN ACOUSTICS AND VIBRATION, 2012, 2012
  • [10] Compressed Sensing Based Real-Time Dynamic MRI Reconstruction
    Majumdar, Angshul
    Ward, Rabab K.
    Aboulnasr, Tyseer
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (12) : 2253 - 2266