Light Propagation in Curved Silver Nanowire Plasmonic Waveguides

被引:210
作者
Wang, Wenhui [1 ,2 ,3 ]
Yang, Qing [3 ,4 ]
Fan, Fengru [3 ]
Xu, Hongxing [1 ,2 ]
Wang, Zhong Lin [3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Zhejiang Univ, Dept Opt Engn, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Silver nanowire; plasmonic waveguide; bending loss; plasmonic circuit; plasmon propagation; bending radius; ELECTROMAGNETIC ENERGY-TRANSPORT; SUBWAVELENGTH-DIAMETER SILICA; SURFACE-PLASMON; METALLIC NANOWIRES; THIN-FILMS; ELECTRICAL DETECTION; DIFFRACTION LIMIT; OPTICAL PLASMONS; LOSSES; EXCITATION;
D O I
10.1021/nl104514m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic waveguides made of metal nanowires (NWs) possess significant potential for applications in integrated photonic and electronic devices. Energy loss induced by bending of a NW during light propagation is critical in affecting its performance as a plasmonic waveguide. We report the characterization of the pure bending loss in curved crystalline silver NW plasmonic waveguicles by decoupling the energy loss caused by bending and propagation. The energy attenuation coefficiency due purely to bending was also determined, which exhibited an exponential relationship with the bending radius. Finite-difference-time-domain (FDTD) methods were utilized for theoretical simulations, which matched the experimental results well.
引用
收藏
页码:1603 / 1608
页数:6
相关论文
共 46 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   DAMPING OF BULK PLASMONS IN SMALL ALUMINUM SPHERES [J].
BATSON, PE .
SOLID STATE COMMUNICATIONS, 1980, 34 (06) :477-480
[4]   Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths [J].
Boltasseva, Alexandra ;
Volkov, Valentyn S. ;
Nielsen, Rasmus B. ;
Moreno, Esteban ;
Rodrigo, Sergio G. ;
Bozhevolnyi, Sergey I. .
OPTICS EXPRESS, 2008, 16 (08) :5252-5260
[5]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[6]   Channel plasmon-polariton guiding by subwavelength metal grooves [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[7]   Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides [J].
Chen, Jing ;
Smolyakov, Gennady A. ;
Brueck, Steven R. J. ;
Malloy, Kevin J. .
OPTICS EXPRESS, 2008, 16 (19) :14902-14909
[8]  
Dickson RM, 2000, J PHYS CHEM B, V104, P6095, DOI 10.1021/jp00143b
[9]   Characterization of bending losses for curved plasmonic nanowire waveguides [J].
Dikken, Dirk Jan ;
Spasenovic, Marko ;
Verhagen, Ewold ;
van Oosten, Dries ;
Kuipers, L. .
OPTICS EXPRESS, 2010, 18 (15) :16112-16119
[10]   Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model [J].
Dionne, JA ;
Sweatlock, LA ;
Atwater, HA ;
Polman, A .
PHYSICAL REVIEW B, 2005, 72 (07)