Identifying AGN Host Galaxies by Machine Learning with HSC plus WISE

被引:11
|
作者
Chang, Yu-Yen [1 ,2 ]
Hsieh, Bau-Ching [2 ]
Wang, Wei-Hao [2 ]
Lin, Yen-Ting [2 ]
Lim, Chen-Fatt [2 ,3 ]
Toba, Yoshiki [2 ,4 ,5 ]
Zhong, Yuxing [6 ]
Chang, Siou-Yu [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan
[2] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Grad Inst Astrophys, Taipei 10617, Taiwan
[4] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
[5] Ehime Univ, Res Ctr Space & Cosm Evolut, 2-5 Bunkyo Cho, Matsuyama, Ehime 7908577, Japan
[6] Waseda Univ, Dept Phys, Shinjuku Ku, 1-6-1 Nishiwaseda, Tokyo 1698050, Japan
基金
日本科学技术振兴机构; 日本学术振兴会; 美国国家航空航天局;
关键词
ACTIVE GALACTIC NUCLEI; INFRARED-SURVEY-EXPLORER; NEURAL-NETWORKS; CLASSIFICATION; COSMOS; EMISSION; IDENTIFICATION; EVOLUTION; STELLAR; MASSES;
D O I
10.3847/1538-4357/ac167c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the performance of machine-learning techniques in classifying active galactic nuclei (AGNs), including X-ray-selected AGNs (XAGNs), infrared-selected AGNs (IRAGNs), and radio-selected AGNs (RAGNs). Using the known physical parameters in the Cosmic Evolution Survey (COSMOS) field, we are able to create quality training samples in the region of the Hyper Suprime-Cam (HSC) survey. We compare several Python packages (e.g., scikit-learn, Keras, and XGBoost) and use XGBoost to identify AGNs and show the performance (e.g., accuracy, precision, recall, F1 score, and AUROC). Our results indicate that the performance is high for bright XAGN and IRAGN host galaxies. The combination of the HSC (optical) information with the Wide-field Infrared Survey Explorer band 1 and band 2 (near-infrared) information performs well to identify AGN hosts. For both type 1 (broad-line) XAGNs and type 1 (unobscured) IRAGNs, the performance is very good by using optical-to-infrared information. These results can apply to the five-band data from the wide regions of the HSC survey and future all-sky surveys.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Identifying Host Galaxies of Extragalactic Radio Emission Structures using Machine Learning
    Lou, Kangzhi
    Lake, Sean E. E.
    Tsai, Chao-Wei
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (07)
  • [2] AGN and Host Galaxies in the COSMOS Survey
    Impey, Christopher D.
    Trump, Jonathan R.
    Gabor, Jared M.
    TRACING THE ANCESTRY OF GALAXIES (ON THE LAND OF OUR ANCESTORS), 2011, (277): : 21 - 25
  • [3] The smallest AGN host galaxies
    Greene, Jenny E.
    Barth, Aaron J.
    Ho, Luis C.
    NEW ASTRONOMY REVIEWS, 2006, 50 (9-10) : 739 - 742
  • [4] Automatic Machine Learning Framework to Study Morphological Parameters of AGN Host Galaxies within z < 1.4 in the Hyper Supreme-Cam Wide Survey
    Tian, Chuan
    Urry, C. Megan
    Ghosh, Aritra
    Nagai, Daisuke
    Ananna, Tonima T.
    Powell, Meredith C.
    Auge, Connor
    Mishra, Aayush
    Sanders, David B.
    Cappelluti, Nico
    Schawinski, Kevin
    ASTROPHYSICAL JOURNAL, 2025, 981 (01)
  • [5] Using Machine Learning to Determine Morphologies of z &lt; 1 AGN Host Galaxies in the Hyper Suprime-Cam Wide Survey
    Tian, Chuan
    Urry, C. Megan
    Ghosh, Aritra
    Ofman, Ryan
    Ananna, Tonima Tasnim
    Auge, Connor
    Cappelluti, Nico
    Powell, Meredith C.
    Sanders, David B.
    Schawinski, Kevin
    Stark, Dominic
    Tremblay, Grant R.
    ASTROPHYSICAL JOURNAL, 2023, 944 (02)
  • [6] The Spiral Structure of AGN Host Galaxies
    Kennefick, Julia
    Barrows, R. Scott
    Hughes, J. Adam
    Schilling, Amanda
    Davis, Benjamin
    Shields, Doug
    Madey, Aaron
    Kennefick, Daniel
    Lacy, Claud
    Seigar, Marc
    STRUCTURE AND DYNAMICS OF DISK GALAXIES, 2014, 480 : 133 - 136
  • [7] GALFIT-ing AGN Host Galaxies in COSMOS: HST versus Subaru
    Dewsnap, Callum
    Barmby, Pauline
    Gallagher, Sarah C. C.
    Urry, C. Megan
    Ghosh, Aritra
    Powell, Meredith C.
    ASTROPHYSICAL JOURNAL, 2023, 944 (02)
  • [8] Effect of AGN on the morphological properties of their host galaxies in the local Universe
    Getachew-Woreta, Tilahun
    Povic, Mirjana
    Masegosa, Josefa
    Perea, Jaime
    Beyoro-Amado, Zeleke
    Marquez, Isabel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (01) : 607 - 620
  • [9] The abundances and properties of Dual AGN and their host galaxies in the EAGLE simulations
    Rosas-Guevara, Yetli M.
    Bower, Richard G.
    McAlpine, Stuart
    Bonoli, Silvia
    Tissera, Patricia B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (02) : 2712 - 2720
  • [10] On the relation of host properties and environment of AGN galaxies across the standard optical diagnostic diagram
    Perez, Noelia R.
    Coldwell, Georgina
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (04) : 5344 - 5354