Spectral Properties of Non-Self-Adjoint Elliptic Differential Operators in Hilbert Space

被引:0
作者
Alizadeh, Reza [1 ]
Sameripour, Ali [1 ]
机构
[1] Lorestan Univ, Dept Math, Khorramabad, Iran
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2022年 / 40卷
关键词
Resolvent; Asymptotic spectrum; Eigenvalue; Non-selfadjoint elliptic differential operator;
D O I
10.5269/bspm.51231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded domain in R-n with smooth boundary partial derivative Omega. In this article, we will investigate the spectral properties of a non-self adjoint elliptic differential operator (Au)(x) = - Sigma(n)(i,j=1) omega(2 alpha)(x)a(ij) (x)mu(x)u(xi)' (x))(xj)', acting in the Hilbert space H = L-2(Omega). with Dirichlet-type boundary conditions. Here a(ij)(x) = <(a(ij)(x))over bar> (i, j = 1, ..., n), a(ij)(x) is an element of C-2<((Omega))over bar>, and the functions a(ij)(x) satisfies the uniformly elliptic condition, and let 0 <= alpha < 1. Furthermore, for for all x is an element of <((Omega))over bar>, the function mu(x) lie in the psi(theta 1 theta 2), where psi(theta 1 theta 2) = {z is an element of C : pi/2 < theta(1) <= vertical bar arg z vertical bar <= theta(2) < pi}.
引用
收藏
页数:5
相关论文
共 12 条
[1]  
Agranovich M.S., 1990, I.Itogi Nauki I Tekhniki: Sovremennye Problemy Mat.: Fundamental'nye Napravleniya, V63, P5
[2]  
[Anonymous], 1984, MATEM SBORNIK
[3]  
Boimatov K.K., 1984, T MAT I STEKLOVA, V170, P37
[4]  
Boimatov K.Kh., 1990, Vest. Mosk. Gos. Univ., Ser. I, Mat. Mekh, V3, P24
[5]  
Boimatov K. Kh., 1984, T SEMPTROSK, V10, P78
[6]  
Boimatov K.Kh., 1992, Mat. Zametki, V51, P6
[7]  
Boimvatov K.Kh., 1993, Dokl. Akad. Nauk. Rossyi, V330
[8]  
Gohberg I. C., 1969, Transl. Math. Monogr., V18
[9]  
Kato T., 1985, PERTURBATION THEORY
[10]  
Naymark M.A., 1969, Linear Differential Operators