A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems

被引:143
作者
Packer, Meredith [1 ]
Gyawali, Dipendra [1 ]
Yerabolu, Ravikiran [1 ]
Schariter, Joseph [1 ]
White, Phil [1 ]
机构
[1] Moderna Inc, 200 Technol Sq, Cambridge, MA 02139 USA
关键词
ALCOHOL;
D O I
10.1038/s41467-021-26926-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lipid nanoparticle (LNP)-formulated mRNA vaccines were rapidly developed and deployed in response to the SARS-CoV-2 pandemic. Due to the labile nature of mRNA, identifying impurities that could affect product stability and efficacy is crucial to the long-term use of nucleic-acid based medicines. Herein, reversed-phase ion pair high performance liquid chromatography (RP-IP HPLC) was used to identify a class of impurity formed through lipid:mRNA reactions; such reactions are typically undetectable by traditional mRNA purity analytical techniques. The identified modifications render the mRNA untranslatable, leading to loss of protein expression. Specifically, electrophilic impurities derived from the ionizable cationic lipid component are shown to be responsible. Mechanisms implicated in the formation of reactive species include oxidation and subsequent hydrolysis of the tertiary amine. It thus remains critical to ensure robust analytical methods and stringent manufacturing control to ensure mRNA stability and high activity in LNP delivery systems. Lipid nanoparticle delivery of mRNA vaccines has become of particular importance, however, mRNA stability is a major concern. Here, the authors report on a study of lipid impurity mRNA interactions using reverse phase ion pair HPLC to identify reactions which render the mRNA untranslatable, reducing vaccine efficiency.
引用
收藏
页数:11
相关论文
共 32 条
[1]   RNA analysis by ion-pair reversed-phase high performance liquid chromatography [J].
Azarani, Arezou ;
Hecker, Karl H. .
NUCLEIC ACIDS RESEARCH, 2001, 29 (02)
[2]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[3]   Continuous flow synthesis of amine oxides by oxidation of tertiary amines [J].
Baumeister, Tobias ;
Zikeli, Stefan ;
Kitzler, Hannes ;
Aigner, Paul ;
Wieczorek, Piotr P. ;
Roeder, Thorsten .
REACTION CHEMISTRY & ENGINEERING, 2019, 4 (07) :1270-1276
[4]   Addressing the Cold Reality of mRNA Vaccine Stability [J].
Crommelin, Daan J. A. ;
Anchordoquy, Thomas J. ;
Volkin, David B. ;
Jiskoot, Wim ;
Mastrobattista, Enrico .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 110 (03) :997-1001
[5]   Lipid Nanoparticle Systems for Enabling Gene Therapies [J].
Cullis, Pieter R. ;
Hope, Michael J. .
MOLECULAR THERAPY, 2017, 25 (07) :1467-1475
[6]   Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery [J].
Fenton, Owen S. ;
Kauffman, Kevin J. ;
McClellan, Rebecca L. ;
Appel, Eric A. ;
Dorkin, J. Robert ;
Tibbitt, Mark W. ;
Heartlein, Michael W. ;
DeRosa, Frank ;
Langer, Robert ;
Anderson, Daniel G. .
ADVANCED MATERIALS, 2016, 28 (15) :2939-2943
[7]   Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells [J].
Garaycoechea, Juan I. ;
Crossan, Gerry P. ;
Langevin, Frederic ;
Mulderrig, Lee ;
Louzada, Sandra ;
Yang, Fentang ;
Guilbaud, Guillaume ;
Park, Naomi ;
Roerink, Sophie ;
Nik-Zainal, Serena ;
Stratton, Michael R. ;
Patel, Ketan J. .
NATURE, 2018, 553 (7687) :171-+
[8]   Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape [J].
Gilleron, Jerome ;
Querbes, William ;
Zeigerer, Anja ;
Borodovsky, Anna ;
Marsico, Giovanni ;
Schubert, Undine ;
Manygoats, Kevin ;
Seifert, Sarah ;
Andree, Cordula ;
Stoeter, Martin ;
Epstein-Barash, Hila ;
Zhang, Ligang ;
Koteliansky, Victor ;
Fitzgerald, Kevin ;
Fava, Eugenio ;
Bickle, Marc ;
Kalaidzidis, Yannis ;
Akinc, Akin ;
Maier, Martin ;
Zerial, Marino .
NATURE BIOTECHNOLOGY, 2013, 31 (07) :638-U102
[9]   Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives [J].
Gomez-Aguado, Itziar ;
Rodriguez-Castejon, Julen ;
Vicente-Pascual, Monica ;
Rodriguez-Gascon, Alicia ;
Angeles Solinis, Maria ;
del Pozo-Rodriguez, Ana .
NANOMATERIALS, 2020, 10 (02)
[10]   Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy [J].
Guevara, Maria L. ;
Persano, Francesca ;
Persano, Stefano .
FRONTIERS IN CHEMISTRY, 2020, 8