Branched Poly(ethylene glycol)-Functionalized Covalent Organic Frameworks as Solid Electrolytes

被引:23
作者
Wang, Yuxiang [1 ]
Zhang, Kun [1 ]
Jiang, Xinzhu [1 ]
Liu, Ziya [1 ]
Bian, Shuyang [1 ]
Pan, Yaoyao [1 ]
Shan, Zhen [1 ]
Wu, Miaomiao [1 ]
Xu, Bingqing [1 ]
Zhang, Gen [1 ]
机构
[1] Nanjing Univ Sci & Technol, Minist Educ, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
covalent organic frameworks; branched PEG; high-temperature Li+ conductivity; solid electrolytes; solid-state lithium-ion batteries; POLYMER ELECTROLYTES; ION; CRYSTALLINE; INTERPHASES;
D O I
10.1021/acsaem.1c02426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(ethylene glycol) (PEG)-derived electrolytes can promote not only conduction of lithium ions but also that of anions. To avoid anion conduction and increase the Li-ion transference number, we propose a new concept that utilizes crowded space to restrict anion movement. Branched PEG chains with different lengths were covalently grafted into the pore surface of covalent organic frameworks (COFs) and construct crowded nanochannels. After incorporating LiTFSI, the COF with longer PEG chains achieves an ionic conductivity of 1.5 x 10(-3) S cm(-1) at 200 degrees C and an activation energy of 0.60 eV. It also inhibits anion movement in a certain direction and obtains a higher transference number than other COFs with shorter PEG chains. The full cell is further assembled, finally obtaining a specific discharge capacity of 153 mAh g(-1) after 60 cycles at 100 degrees C.
引用
收藏
页码:11720 / 11725
页数:6
相关论文
共 31 条
[1]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[2]   CONTACT ION-PAIR FORMATION AND ETHER OXYGEN COORDINATION IN THE POLYMER ELECTROLYTES M[N(CF3SO2)(2)](2)PEO(N) FOR M=MG, CA, SR AND BA [J].
BAKKER, A ;
GEJJI, S ;
LINDGREN, J ;
HERMANSSON, K ;
PROBST, MM .
POLYMER, 1995, 36 (23) :4371-4378
[3]   Processing thin but robust electrolytes for solid-state batteries [J].
Balaish, Moran ;
Gonzalez-Rosillo, Juan Carlos ;
Kim, Kun Joong ;
Zhu, Yuntong ;
Hood, Zachary D. ;
Rupp, Jennifer L. M. .
NATURE ENERGY, 2021, 6 (03) :227-239
[4]   Internal Functionalization of Three-Dimensional Covalent Organic Frameworks [J].
Bunck, David N. ;
Dichtel, William R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (08) :1885-1889
[5]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[6]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[7]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[8]   Covalent organic frameworks (COFs): from design to applications [J].
Ding, San-Yuan ;
Wang, Wei .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (02) :548-568
[9]   Covalent organic frameworks [J].
Feng, Xiao ;
Ding, Xuesong ;
Jiang, Donglin .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (18) :6010-6022
[10]   Ionic conductivity in crystalline polymer electrolytes [J].
Gadjourova, Z ;
Andreev, YG ;
Tunstall, DP ;
Bruce, PG .
NATURE, 2001, 412 (6846) :520-523