A Lindstrom Theorem for Intuitionistic Propositional Logic

被引:3
作者
Badia, Guillermo [1 ,2 ]
Olkhovikov, Grigory [3 ]
机构
[1] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
[2] Univ Queensland, Sch Hist & Philosoph Inquiry, Brisbane, Qld, Australia
[3] Ruhr Univ Bochum, Dept Philosophy 1, Bochum, Germany
基金
奥地利科学基金会;
关键词
Lindstrom theorem; intuitionistic logic; abstract model theory; asimulations;
D O I
10.1215/00294527-2019-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that propositional intuitionistic logic is the maximal (with respect to expressive power) abstract logic satisfying a certain form of compact-ness, the Tarski union property (TUP), and preservation under asimulations.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 22 条
[1]  
BARWISE J, 1974, ANN MATH LOGIC, V7, P221
[2]  
Barwise Jon., 1985, Model-Theoretic Logics, P3
[3]  
Blackburn P., 2001, Cambridge Tracts in Theoretical Computer Science
[4]  
Caicedo X., 1995, QUANTIFIERS LOGICS M, V248, P263
[5]  
Chagrov A., 1997, OXFORD LOGIC GUIDES, V35
[6]  
De Rijke M., 1995, Modal Logic and Process Algebra, P217
[7]  
Dontchev J., 1996, INT J MATH MATH SCI, V19, P303
[8]   A General Lindstrom Theorem for Some Normal Modal Logics [J].
Enqvist, Sebastian .
LOGICA UNIVERSALIS, 2013, 7 (02) :233-264
[9]  
Feferman S., 1974, FUND MATH, V82, P153, DOI 10.4064/fm-82-2-153-165
[10]  
Flum J., 1974, LECT NOTES MATH, V499, P248