On Kippenhahn curves and higher-rank numerical ranges of some matrices

被引:7
|
作者
Bebiano, Natalia [1 ]
da Providencia, Joao [2 ]
Spitkovsky, Ilya M. [3 ]
机构
[1] Univ Coimbra, Dept Matemdt, Coimbra, Portugal
[2] Univ Coimbra, Dept Fis, Coimbra, Portugal
[3] New York Univ Abu Dhabi NYUAD, Div Sci & Math, POB 129188, Abu Dhabi, U Arab Emirates
关键词
Numerical range; Reciprocal matrices; Kippenhahn curve;
D O I
10.1016/j.laa.2021.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The higher rank numerical ranges of generic matrices are described in terms of the components of their Kippenhahn curves. Cases of tridiagonal (in particular, reciprocal) 2-periodic matrices are treated in more detail. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 257
页数:12
相关论文
共 50 条
  • [1] Equality of higher-rank numerical ranges of matrices
    Chang, Chi-Tung
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05) : 626 - 638
  • [2] Kippenhahn Curves of Some Tridiagonal Matrices
    Bebiano, Natalia
    da Providencia, Joao
    Spitkovsky, Ilya
    Vazquez, Kenya
    FILOMAT, 2021, 35 (09) : 3047 - 3061
  • [3] HIGHER RANK NUMERICAL RANGES OF RECTANGULAR MATRICES
    Zahraei, Mohsen
    Aghamollaei, Gholamreza
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (02): : 133 - 142
  • [4] On some reciprocal matrices with elliptical components of their Kippenhahn curves
    Jiang, Muyan
    Spitkovsky, Ilya M.
    SPECIAL MATRICES, 2022, 10 (01): : 117 - 130
  • [5] Higher rank numerical ranges of Jordan-like matrices
    Argerami, Martin
    Mustafa, Saleh
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 807 - 826
  • [6] Unified approach to reciprocal matrices with Kippenhahn curves containing elliptical components
    Jiang, Muyan
    Spitkovsky, Ilya M.
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [7] HIGHER NUMERICAL RANGES OF QUATERNION MATRICES
    Aboutalebi, Narjes Haj
    Aghamollaei, Gholamreza
    Kermani, Hossein Momenaee
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 889 - 904
  • [8] Elliptical higher rank numerical range of some Toeplitz matrices
    Adam, Maria
    Aretaki, Aikaterini
    Spitkovsky, Ilya M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 : 256 - 275
  • [9] Real higher rank numerical ranges and ellipsoids
    Kazakov, Matthew
    Kribs, David W.
    Pereira, Rajesh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 577 : 204 - 213
  • [10] On the numerical ranges of some tridiagonal matrices
    Chien, Ruey Ting
    Spitkovsky, Ilya M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 : 228 - 240