Green Fabrication of Silkworm Cocoon-like Silicon-Based Composite for High-Performance Li-Ion Batteries

被引:100
作者
Du, Fei-Hu [1 ]
Ni, Yizhou [3 ,4 ]
Wang, Ye [1 ]
Wang, Dong [2 ]
Ge, Qi [2 ]
Chen, Shuo [3 ,4 ]
Yang, Hui Ying [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] Singapore Univ Technol & Design, Digital Mfg & Design Ctr, 8 Somapah Rd, Singapore 487372, Singapore
[3] Univ Houston, Dept Phys, 4800 Calhoun Rd, Houston, TX 77204 USA
[4] Univ Houston, Texas Ctr Superconduct, 4800 Calhoun Rd, Houston, TX 77204 USA
关键词
Li-ion batteries; yolk-shell nanostructure; porous silicon nanorods; Al2O3; template; in situ transmission electron microscopy; finite element simulation; 3-DIMENSIONAL MESOPOROUS SILICON; POROUS SILICON; ANODE MATERIAL; CHEMICAL-REDUCTION; HOLLOW NANOSPHERES; CARBON NANOTUBES; LITHIUM STORAGE; ENERGY-STORAGE; SI ANODES; LITHIATION;
D O I
10.1021/acsnano.7b03830
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing yolk-shell nanostructures is an effective way of addressing the huge volume expansion issue for large-capacity anode and cathode materials in Li-ion batteries (LIBs). Previous studies mainly focused on adopting a SiO2 template through HF etching to create yolk shell nanostructures. However, HF etching is highly corrosive and may result in a significant reduction of Si content in the composite. Herein, a silkworm cocoon-like silicon-based composite is prepared through a green approach in which Al2O3 was selected as a sacrificial template. The void space between the outer nitrogen-doped carbon (NC) shell formed by chemical vapor deposition using a pyridine precursor and the inside porous silicon nanorods (p-Si NRs) synthesized by magnesiothermic reduction of ordered mesoporous silica nanorods can be generated by etching Al2O3 with diluted HCl. The obtained p-Si NRs@void@ NC composite is utilized as an anode material for LIBs, which exhibits a large initial discharge capacity of 3161 mAh g(-1) at 0.5 A g(-1), excellent cycling behavior up to 300 cycles, and super rate performance. Furthermore, a deep understanding of the mechanism for the yolk-shell nanostructure during the Li-alloying process is revealed by in situ transmission electron microscopy and finite element simulation.
引用
收藏
页码:8628 / 8635
页数:8
相关论文
共 46 条
[1]   Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].
Bao, Zhihao ;
Weatherspoon, Michael R. ;
Shian, Samuel ;
Cai, Ye ;
Graham, Phillip D. ;
Allan, Shawn M. ;
Ahmad, Gul ;
Dickerson, Matthew B. ;
Church, Benjamin C. ;
Kang, Zhitao ;
Abernathy, Harry W., III ;
Summers, Christopher J. ;
Liu, Meilin ;
Sandhage, Kenneth H. .
NATURE, 2007, 446 (7132) :172-175
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles [J].
Chen, Dongyun ;
Mei, Xiao ;
Ji, Ge ;
Lu, Meihua ;
Xie, Jianping ;
Lu, Jianmei ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (10) :2409-2413
[4]   Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials [J].
Du, Fei-Hu ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (01) :32-50
[5]   Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability [J].
Du, Fei-Hu ;
Li, Bo ;
Fu, Wei ;
Xiong, Yi-Jun ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
ADVANCED MATERIALS, 2014, 26 (35) :6145-6150
[6]   Incorporation of heterostructured Sn/SnO nanoparticles in crumpled nitrogen-doped graphene nanosheets for application as anodes in Lithium-ion batteries [J].
Du, Fei-Hu ;
Liu, Yu-Si ;
Long, Jie ;
Zhu, Qian-Cheng ;
Wang, Kai-Xue ;
Wei, Xiao ;
Chen, Jie-Sheng .
CHEMICAL COMMUNICATIONS, 2014, 50 (69) :9961-9964
[7]   A graphene-wrapped silver-porous silicon composite with enhanced electrochemical performance for lithium-ion batteries [J].
Du, Fei-Hu ;
Wang, Kai-Xue ;
Fu, Wei ;
Gao, Peng-Fei ;
Wang, Jing-Feng ;
Yang, Jun ;
Chen, Jie-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (43) :13648-13654
[8]   Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries [J].
Esmanski, Alexei ;
Ozin, Geoffrey A. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (12) :1999-2010
[9]   Three-dimensional porous silicon-MWNT heterostructure with superior lithium storage performance [J].
Gao, Pengfei ;
Jia, Haiping ;
Yang, Jun ;
Nuli, Yanna ;
Wang, Jiulin ;
Chen, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (45) :20108-20111
[10]   Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon [J].
Ge, Mingyuan ;
Lu, Yunhao ;
Ercius, Peter ;
Rong, Jiepeng ;
Fang, Xin ;
Mecklenburg, Matthew ;
Zhou, Chongwu .
NANO LETTERS, 2014, 14 (01) :261-268