Optimal truss design by interior-point methods

被引:48
作者
Jarre, F
Kocvara, M
Zowe, J
机构
[1] Univ Wurzburg, Inst Angew Math & Stat, D-97074 Wurzburg, Germany
[2] Univ Erlangen Nurnberg, Inst Angew Math, D-91058 Erlangen, Germany
关键词
interior-point methods; truss topology design; convex programming;
D O I
10.1137/S1052623496297097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a primal-dual predictor-corrector interior-point method for solving quadratically constrained convex optimization problems that arise from truss design problems. We investigate certain special features of the problem, discuss fundamental differences of interior-point methods for linearly and nonlinearly constrained problems, extend Mehrotra's predictor-corrector strategy to nonlinear programs, and establish convergence of a long step method. Numerical experiments on large scale problems illustrate the surprising efficiency of the method.
引用
收藏
页码:1084 / 1107
页数:24
相关论文
共 27 条
[1]  
Achtziger W., 1992, Impact of Computing in Science and Engineering, V4, P315, DOI 10.1016/0899-8248(92)90005-S
[2]  
ANDERSEN E, 1996, HOMOGENEOUS ALGORITH
[3]   A NEW METHOD FOR OPTIMAL TRUSS TOPOLOGY DESIGN [J].
Ben-Tal, Aharon ;
Bendsoe, Martin P. .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (02) :322-358
[4]   A truncated log barrier algorithm for large-scale convex programming and minmax problems: Implementation and computational results [J].
BenTal, A ;
Roth, G .
OPTIMIZATION METHODS & SOFTWARE, 1996, 6 (04) :283-312
[5]   Penalty/barrier multiplier methods for convex programming problems [J].
BenTal, A ;
Zibulevsky, M .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :347-366
[6]  
BLUM E, 1975, MATH OPTIMIERUNG
[7]  
BYRD R, 1995, 9705 OTC NW U
[8]  
den Hertog D., 1994, Interior Point Approach to Linear, Quadratic and Convex Programming
[9]  
Dorn WS, 1964, Des Mech, V1, P25, DOI DOI 10.1016/B978-0-08-010580-2.50008-6
[10]  
FREUND RW, 1996, MATH PROGRAMMING B, V76, P183